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siderably extends the bounds of computational feasibility. Our algorithm is constructed

analogously to a network algorithm for Freeman-Halton exact test in two-way contingency

tables. In this algorithm, the smallest and largest values for the statistic are important

and some interesting new theorems are proved for computing these values. Numerical

examples are given to illustrate the practicality of the algorithm.
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1. Introduction

Since its discovery in the early 1900s, the Hardy-Weinberg law plays an important role in

the �eld of population genetics and often serves as a basis for genetic inference (see, for

example, Crow, 1988). This law states that in a large random-mating population with no

selection, mutation or migration, the allele frequencies and the genotype frequencies are

constant from generation to generation and that there is a simple relationship between

the allele frequencies and the genotype frequencies.

Because of its importance, much attention has been paid to tests of the hypothesis

that a population being sampled is in Hardy-Weinberg equilibrium. It has been recognized

that the adequacy of applying classical goodness-of-�t tests of Hardy-Weinberg proportion

is often questionable when the sample size or some genotypic frequencies are small (see,

for example, Emigh, 1980). Although a variety of corrections for small sample sizes are

proposed (Emigh and Kempthorne, 1975; Elston and Forthofer, 1977; Smith, 1986), it is

found that they usually do not greatly improve the results obtained from the traditional

goodness-of-�t tests (Emigh, 1980; Hern�andez and Weir, 1989).

From these reasons, use of exact tests, which do not rely on asymptotic theory, is

desirable. Levene (1949) described the conditional distribution of a sample drawn from a

population in Hardy-Weinberg equilibrium for an arbitrary number of alleles and Emith

(1980) used Levene's distribution for the case of two alleles in his comparison of many

statistical tests of Hardy-Weinberg hypothesis. Louis and Dempster (1987) proposed

an algorithm for generating all possible samples for the exact distribution in an e�cient

manner. Their algorithm works well when the number of alleles is small (say, four or �ve).

However, it is not of practical use for loci with more than a few alleles since the number

of possible samples with the same gene frequencies and sample sizes grows exponentially

with the number of alleles (Hern�andez and Weir, 1989). An alternative approach that

avoids complete enumeration is the simulated method such as a conventional Monte Carlo

method or a Markov chain method (Guo and Thompson, 1992). These simulated methods,

however, have a disadvantage that the calculated p value distributes around the true value

and is not exact in this sense. Considering the purpose of the exact test, it is prefered to

compute the exact p value if possible, and simulated methods will not be dealt with in

this paper.

The present article provides an improvement of the work of Louis and Dempster (1987).

In this paper, we propose a new technique that considerably extends the bounds of com-

putational feasibility of the exact test. Our algorithm is constructed analogously to a

network algorithm proposed by Mehta and Patel (1983) for Freeman-Halton exact test

(Freeman and Halton, 1951) in two-way contingency tables. Similarly to their algorithm,

the computation of the smallest and largest values for the statistic plays an important

role in our algorithm and some interesting new theorems are proved for computing these

values.

The construction of this article is as follows. In section 2, an exact test of Hardy-

Weinberg proportion for multiple alleles is formulated. In section 3, the network algorithm

for computing the exact p values is given. In section 4, several new theorems for some

optimizing problems are proved. Some numerical examples are given in section 5 to

illustrate the practicality of our algorithm.
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2. Exact test for multiple alleles

We assume that there are r distinct alleles, A

1

; A

2

; :::; A

r

, of a given gene. If a sample

of size N is drawn from a population of interest, the data can be expressed as the upper

triangular array

A

1

x

o

11

x

o

12

� � � x

o

1r

A

2

x

o

22

� � � x

o

2r

.

.

. � � � � � �

A

r

x

o

rr

A

1

A

2

� � � A

r

where x

o

ij

(1 � i � j � r) is the observed count of genotype A

i

A

j

in the sample.

Throughout the paper we will use a vector notation like X = (x

ij

) to designate this

type of table. For notational convenience, we write x

ij

= x

ji

for i > j. We also de�ne

y = (y

1

; y

2

; :::; y

r

) with y

i

= x

o

ii

+

P

r

j=1

x

o

ij

; i = 1; :::; r: y

i

is the number of A

i

genes in the

sample. Clearly we have

P

i�j

x

o

ij

= N and

P

r

i=1

y

i

= 2N: Let F denote the reference set

of all possible counts of genotype with the same gene counts as X

o

:

F =

8

<

:

X j X = (x

11

; x

12

; x

22

; :::; x

rr

); x

ii

+

r

X

j=1

x

ij

= y

i

for i = 1; :::; r

9

=

;

:

We denote the number of elements in F by #F. Write D = (2N)!=(N !

Q

r

i=1

y

i

!) for later

use. Then, under Hardy-Weinberg proportions and conditional on y, the probability of

observing any X 2 F is expressed as (Levene, 1949)

P (X) =

N !

Q

r

i=1

y

i

!

(2N)!

Q

i�j

x

ij

!

2

z

=

1

D

2

z

Q

i�j

x

ij

!

;

where z =

P

i<j

x

ij

= N �

P

r

i=1

x

ii

is the number of heterozygotes in the sample.

The p value for the conditional test of Hardy-Weinberg proportions is de�ned as the

sum of probabilities of all the counts of genotype in F that are no more likely than X

o

(see, for example, Chapco, 1976), that is,

p =

X

X2T

P (X); (1)

where T = fX j X 2 F ; P (X) � P (X

o

)g. Acceptance or rejection is based on a

comparison of this value with some preset � level as in any statistical test. This test

correspongs to the two-sided version of Fisher's exact test for 2� 2 contingency table, or

Freeman-Halton exact test for two-way contingency table.

3. The network representation and the algorithm

For calculating the p value de�ned by (1), one simple approach is to generate all the

samples in F . Louis and Dempster (1987) described how to generate all the samples in

F and computed the exact p values for some examples with three or four alleles. Their

naive algorithm is, however, very time-consuming if #F is large. In this paper, a new

algorithm is proposed that does not require total enumeration of the reference set. This

algorithm is a natural extension of the network algorithm for computing Freeman-Halton
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exact p values for two-way contingency table (Mehta and Patel, 1983). First we provide

a network representation for the reference set F .

The network representation consists of nodes and arcs constructed in r+1 stages. For

k = r; r � 1; :::; 1; 0, the nodes at stage k have the form (k; Y

1;k

; Y

2;k

; :::; Y

k;k

) � (k;Y

k

).

There are as many nodes at stage k as there are possible partial sums of genes for the

�rst k alleles. Arcs emanate from each node at stage k and every arc is connected to

only one node at stage k � 1. The network is constructed recursively by specifying all

successor nodes (k�1;Y

k�1

) that are connected by arcs to each node (k;Y

k

). The range

of Y

i;k

; i = 1; :::; k, for these successor nodes is obtained from using the algorithm of Louis

and Dempster (1987). There is only one node at stage r, the initial node, which is labeled

(r;Y

r

) � (r; Y

1;r

; :::; Y

r;r

) = (r; y

1

; :::; y

r

) = (r;y). There is also only one node at stage 0,

the terminal node, which is labeled (0). A path through the network is a sequence of arcs

(r;Y

r

)! (r � 1;Y

r�1

)! � � � ! (2;Y

2

)! (1;Y

1

)! (0):

One can verify that each path represents a distinct element in F , with the relations

x

11

=

1

2

Y

1;1

; (2)

x

ik

= Y

i;k

� Y

i;k�1

; i = 1; :::; k � 1; k = 2; :::; r; (3)

and

x

kk

=

1

2

 

Y

k;k

�

k�1

X

i=1

x

ik

!

; k = 2; :::; r: (4)

Figure 1 shows the network representation for three alleles case with gene counts (y

1

; y

2

; y

3

) =

(6; 5; 3). The dotted path gives the array of counts X = (x

11

; x

12

; x

13

; x

22

; x

23

; x

33

) =

(2; 1; 1; 2; 0; 1):

We de�ne the length of an arc from node (k;Y

k

) to (k � 1;Y

k�1

) by

ARC(k;Y

k

;Y

k�1

) =

2

P

k�1

i=1

(Y

i;k

�Y

i;k�1

)

"

1

2

fY

k;k

�

k�1

X

i=1

(Y

i;k

� Y

i;k�1

)g

#

!�

k�1

Y

i=1

(Y

i;k

� Y

i;k�1

)!

:

The length of path or sub-path is de�ned as the product of the corresponding arc lengths.

Then it is straightforward to verify that the length of complete path from the initial node

to the terminal node is equal to D � P (X) by using the relations (2), (3) and (4).

Now our goal is to identify and sum all paths whose length do not exceed D � P (X

o

).

If we systematically enumerate each path through the network, compute its length and

sum the path lengths that does not exceed D � P (X

o

), we are in e�ect considering all

the elements in F . This is nothing but the algorithm of Louis and Dempster (1987) and

usually computationally infeasible if #F is large.

To avoid such total enumeration, we compute at each node (k;Y

k

) the shortest and

longest values of the sub-path from the node (k;Y

k

) to the terminal node. We call these

sub-paths as LP (longest sub-path) or SP (shortest sub-path) according to Mehta and

Patel (1983). On the other hand, the length of the sub-path from the initial node to the

current node (k;Y

k

) is calculated from the labels (r;Y

r

); :::; (k;Y

k

) as

PAST =

r

Y

j=k+1

ARC(j;Y

j

;Y

j�1

):
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Figure 1. Network representation for three alleles case with (y

1

; y

2

; y

3

) = (6; 5; 3).

Now we can determine whether all the paths having a common sub-path (r;Y

r

)! � � � !

(k;Y

k

) do or do not contribute to the p value, without processing the remaining parts of

paths as follows.

� Case 1. If

PAST � LP (k;Y

k

) � D � P (X

o

); (5)

then the lengths of all paths having common sub-path (r;Y

r

)! � � � ! (k;Y

k

) are

not greater than D � P (X

o

). Hence the lengths of all these paths contribute the p

value.

� Case 2. If

PAST � SP (k;Y

k

) > D � P (X

o

); (6)

then the lengths of all paths having common sub-path (r;Y

r

) ! � � � ! (k;Y

k

)

exceed D � P (X

o

). Hence none of these paths contributes to the p value.

� Case 3. Otherwise, we consider the next stage (stage k � 1).

It should be noted that the sum of all the sub-path lengths from the node (k;Y

k

) to the

terminal node is equal to (2N

k

)!=(N

k

!

Q

k

i=1

Y

i;k

), where N

k

=

1

2

P

k

i=1

Y

i;k

: This relation is

derived in the same manner as Levene (1949). Then the contribution to the p value in

the case 1 equals PAST � (2N

k

)!=(N

k

!

Q

k

i=1

Y

i;k

). Consequently, we need not enumerate

the remaining parts of paths for the case 1 or 2. In the case 3, we consider the common

sub-path to a node (k � 1;Y

k�1

) at stage k � 1 which is connected to the node (k;Y

j

),

and proceed to verify (5) and (6) in the same manner as before.

The only remaining problem is to compute LP and SP at each node. If we can evaluate

LP and SP exactly, we can trim paths perfectly. It is worth pointing out, however, that

if we can only evaluate an upper bound for LP or a lower bound for SP, we can make

incomplete trimming. For Freeman-Halton exact test in two-way contingency table, Mehta

and Patel (1983) evaluated an upper bound for LP and a lower bound for SP. For the

Hardy-Weinberg case, we obtain the closed form expression of exact SP value in the next

section. As for LP, although no closed form of exact LP value is available, we present two

upper bounds for LP.
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4. Computation of the shortest and longest paths

4.1 A closed form expression of SP

First we present a closed form expression of SP (k;Y

k

). Before we state a theorem we

de�ne I = f1; 2; :::; kg; I

e

= fi j Y

i;k

is eveng and I

o

= fi j Y

i;k

is oddg. We also de�ne the

following decomposition of the set I

o

as I

o

= I

�

o

[

e

I

o

; I

�

o

\

e

I

o

= ;, where I

�

o

is the maximal set

made from the unions of pair (i; j) such that Y

i;k

= Y

j;k

and

e

I

o

= I

o

�I

�

o

is the remaining set

satisfying Y

i;k

6= Y

j;k

for all i; j 2

e

I

o

; i 6= j. If Y

k

= (13; 12; 11; 11; 11; 10; 9; 8; 5; 5; 3; 3; 3),

for example, we have I

e

= f2; 6; 8g; I

�

o

= f3; 4; 9; 10; 11; 12g and

~

I

o

= f1; 5; 7; 13g. (Al-

though the elements of

~

I

o

and I

�

o

are not unique, corresponding values of Y

i;k

are uniquely

determined.) It should be noted that, by de�nition, Y

1;k

+ � � � + Y

k;k

, #I

o

, #

e

I

o

and #I

�

o

are all even numbers. Using these sets, our problem can be written in the following form:

P

1

: minimize

2

z

Y

1�i�j�k

x

ij

!

; z =

X

1�i<j�k

x

ij

; (7)

subject to

x

ij

+

k

X

j=1

x

ij

= 2m

i

; for i 2 I

e

; (8)

x

ij

+

k

X

j=1

x

ij

= 2m

i

+ 1; for i 2 I

o

; (9)

x

ji

= x

ij

; (10)

x

ij

is a non-negative integer for i; j = 1; :::; k. (11)

A solution of P

1

is given in the following theorem.

Theorem 1 The optimal objective function value of P

1

is given by

2

z

�

0

@

Y

i2I

e

1

m

i

!

1

A

0

B

@

Y

i2

e

I

o

1

m

i

!

1

C

A

8

<

:

Y

i2I

�

o

1

(2m

i

+ 1)!

9

=

;

1=2

; where z

�

=

1

2

8

<

:

X

i2I

�

o

(2m

i

+ 1) + #

e

I

o

9

=

;

:

(12)

Hereafter, we de�ne X

�

= (x

�

11

; x

�

12

; x

�

22

; :::; x

�

kk

) as one of the solutions of P

1

that mini-

mizes (7) subject to (8), (9), (10) and (11). To prove the above theorem, we prepare the

following lemma.

Lemma 1 The optimal solution X

�

satis�es the following conditions.

(a) x

�

ij

; i 6= j, cannot be a positive even number.

(b) fx

�

i1

; :::; x

�

ii�1

; x

�

ii+1

; :::; x

�

ik

g includes at most one odd number for all i.

Proof of Lemma 1.
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(a) Suppose that x

�

ij

= 2n; n � 1, for some i; j (i 6= j). Consider another solution

X

0

= (x

0

11

; :::; x

0

kk

), where

(

x

0

ii

= x

�

ii

+ n; x

0

jj

= x

�

jj

+ n; x

0

ij

= 0;

x

0

ij

= x

�

ij

for all the other i; j.

Clearly,X

0

satis�es (8),(9),(10) and (11). Let OF

�

be the value of the objective function

under X

�

and OF

0

be the value of the objective function under X

0

. Then we have

OF

�

OF

0

=

2

2n

(n!)

2

(2n)!

 

x

�

ii

+ n

x

�

ii

! 

x

�

jj

+ n

x

�

jj

!

�

2

2n

(n!)

2

(2n)!

� f

1

(n);

f

1

(n+ 1)

f

1

(n)

=

2(n+ 1)

2n+ 1

> 1

and f

1

(n) > f

1

(n� 1) > � � � > f

1

(1) = 2 > 1. Hence OF

�

> OF

0

holds. This contradicts

that OF

�

is the optimal objective function value.

(b) Suppose that x

�

ij

1

= 2n

1

+ 1; x

�

ij

2

= 2n

2

+ 1; n

1

; n

2

� 0; j

1

6= i; j

2

6= i for some

j

1

; j

2

(j

1

6= j

2

). Consider another solution X

0

, where

8

>

<

>

:

x

0

ii

= x

�

ii

+ n

1

+ n

2

+ 1; x

0

j

1

j

1

= x

�

j

1

j

1

+ n

1

; x

0

j

2

j

2

= x

�

j

2

j

2

+ n

2

;

x

0

ij

1

= x

0

ij

2

= 0; x

0

j

1

j

2

= x

�

j

1

j

2

+ 1;

x

0

ij

= x

�

ij

for all the other i; j.

Clearly, X

0

satis�es (8),(9),(10) and (11). Let OF

0

be the value of the objective function

under X

0

. Then we have

OF

�

OF

0

=

2

2n

1

+2n

2

+1

n

1

!n

2

!(n

1

+ n

2

+ 1)!

(2n

1

+ 1)!(2n

2

+ 1)!

 

x

�

ii

+ n

1

+ n

2

+ 1

x

�

ii

! 

x

�

j

1

j

1

+ n

1

x

�

j

1

j

1

!

�

 

x

�

j

2

j

2

+ n

2

x

�

j

2

j

2

!

(x

�

j

1

j

2

+ 1)

�

2

2n

1

+2n

2

+1

n

1

!n

2

!(n

1

+ n

2

+ 1)!

(2n

1

+ 1)!(2n

2

+ 1)!

� f

2

(n

1

; n

2

)

and

f

2

(n

1

+ 1; n

2

)

f

2

(n

1

; n

2

)

=

2(n

1

+ n

2

+ 2)

2n

1

+ 3

�

2(n

1

+ 2)

2n

1

+ 3

> 1:

Similarly we have

f

2

(n

1

; n

2

+ 1)

f

2

(n

1

; n

2

)

> 1. Hence f

2

(n

1

; n

2

) > f

2

(0; 0) = 2 > 1 andOF

�

> OF

0

holds. This contradicts that OF

�

is the optimal objective function value. Q.E.D.

Now we prove the Theorem 1 using the above lemma.

Proof of the Theorem 1.

As a direct result of the Lemma 1, we have x

�

ii

= m

i

; x

�

ij

= 0; j 6= i; for all i 2 I

e

since

the number of odd values in fx

�

i1

; :::; x

�

ii�1

; x

�

ii+1

; :::; x

�

ik

g is even for all i 2 I

e

. On the other

7



hand, we see that the elements of I

o

are separated into pairs as (i

1

; j

1

); (i

2

; j

2

); :::; (i

p

; j

p

)

such that

x

�

ij

> 0; if (i; j) is a pair;

= 0; otherwise,

and p = #I

o

=2 is the number of the pairs. Then the optimal objective function value of

P

1

can be written as

2

z

�

0

@

Y

i2I

e

1

m

i

!

1

A

 

p

Y

n=1

1

x

�

i

n

i

n

!x

�

j

n

j

n

!x

�

i

n

j

n

!

!

; z

�

=

p

X

n=1

x

�

i

n

j

n

: (13)

Hereafter we call (i; j) an identical pair if m

i

= m

j

and a di�erent pair if m

i

6= m

j

. It is

worth pointing out that i; j 2 I

�

o

for all identical pairs (i; j).

First we consider the identical pair (i; j). Let m

i

= m

j

� m and

x

�

ij

= 2(m� n) + 1; x

�

ii

= x

�

jj

= n (14)

for these i; j. Now we show that n has to be zero, that is, min

0�n�m

OF (n) = OF (0); where

OF (n) is the objective function value when x

�

ij

; x

�

ii

and x

�

jj

of X

�

are given by (14) for

n = 0; :::; m. We have

OF (n+ 1)

OF (n)

=

(2m� 2n+ 1)(m� n)

2(n+ 1)

2

:

If we compare this ratio to 1 for n = 0; 1; :::; m; then we have

OF (n+ 1)

OF (n)

< 1 for n >

2m

2

+m� 2

4m+ 5

and

OF (n+ 1)

OF (n)

> 1 for n <

2m

2

+m� 2

4m+ 5

and hence min

0�n�m

OF (n) = minfOF (0); OF (m)g. Besides we have

OF (m)

OF (0)

=

(2m+ 1)!

2

2m

(m!)

2

� f

3

(m)

and

f

3

(m+ 1)

f

3

(m)

=

2m+ 3

2(m+ 1)

> 1:

Hence

f

3

(m) > f

3

(m� 1) > � � � > f

3

(0) = 1 (15)

and OF (m) > OF (0). We have now shown that

8

>

<

>

:

x

�

ij

= 2m

i

+ 1;

x

is

= 0; for s 6= j;

x

js

= 0; for s 6= i;

(16)

for the identical pair (i; j).
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Next we consider the di�erent pair (i; j). We can assume m

i

> m

j

without loss of

generality. Similarly to the case of the identical pair, we denote

x

�

ii

= m

i

� n; x

�

jj

= m

j

� n; x

�

ij

= 2n+ 1

and consider the sequence OF (n); n = 0; 1; :::;m

j

. The ratio is written as

OF (n)

OF (0)

=

n�1

Y

k=0

(

2(m

i

� k)

2(n� k) + 1

�

m

j

� k

n� k

)

�

n�1

Y

k=0

2(m

i

� k)

2(n � k) + 1

:

From m

i

> m

j

, we have m

i

� n > m

j

� n � 0 and then m

i

� n+1 holds. Hence we have

OF (n)

OF (0)

�

n�1

Y

k=0

2(n+ 1� k)

2(n� k) + 1

> 1

and OF (n) > OF (0). We have shown that

(

x

�

ii

= m

i

; x

�

jj

= m

j

; x

�

ij

= 1;

x

is

= x

js

= 0 for s 6= i; j

(17)

for the di�erent pair (i; j).

Now we show that the pairs have to be constructed in such a way that the number

of identical pairs is maximized. Clearly it is su�cient to consider the case of four alleles,

Y

k

= (Y

1;k

; Y

2;k

; Y

3;k

; Y

4;k

) = (2m

1

+ 1; 2m

1

+ 1; 2m

3

+ 1; 2m

4

+ 1) where m

1

6= m

3

and

m

1

6= m

4

.

(i) If we make pairs as (1; 3) and (2; 4), then the optimal X

�

is obtained from (17) as

(

x

�

11

= x

�

22

= m

1

; x

�

33

= m

3

; x

�

44

= m

4

; x

�

13

= x

�

24

= 1;

otherwise x

�

ij

= 0:

(ii) Similarly, if we make pairs as (1; 2) and (3; 4), X

�

is written as follows:

� If m

3

= m

4

, then

(

x

�

12

= 2m

1

+ 1; x

�

34

= 2m

3

+ 1;

otherwise x

�

ij

= 0:

� If m

3

6= m

4

, then

(

x

�

12

= 2m

1

+ 1; x

�

33

= m

3

; x

�

44

= m

4

; x

�

34

= 1;

otherwise x

�

ij

= 0:

Let OF

i

and OF

ii

denote the objective function values corresponding to (i) and (ii),

respectively.

� If m

3

= m

4

, then

OF

i

OF

ii

=

(2m

1

+ 1)!

2

2m

1

(m

1

!)

2

�

(2m

3

+ 1)!

2

2m

3

(m

3

!)

2

= f

3

(m

1

)f

3

(m

3

):

From (15), we have OF

i

> OF

ii

in this case.
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� If m

3

6= m

4

, then

OF

i

OF

ii

=

(2m

1

+ 1)!

2

2m

1

(m

1

!)

2

= f

3

(m

1

):

Again from (15), we have OF

i

> OF

ii

.

From these considerations, it is shown that the case of (i) is not optimal. In other words,

all the di�erent pairs have to be included in

e

I

o

and all the identical pairs have to be

included in I

�

o

. Substitution of (16) and (17) into (13) corresponding to

e

I

o

and I

�

o

and

some simpli�cation yields (12). Q.E.D.

4.2 Some upper bounds for LP

Next we consider LP (k;Y

k

). The problem we consider is

P

2

: maximize

2

z

Y

1�i�j�k

x

ij

!

; z =

X

1�i<j�k

x

ij

;

subject to

x

ij

+

k

X

j=1

x

ij

= Y

i;k

; for i = 1; :::; k (18)

and (10),(11). Unfortunately the closed form expression of LP (k;Y

k

) in not available

except for small k. In this paper, two upper bounds for LP (k;Y

k

) and closed form of

LP (2;Y

2

) are provided.

Theorem 2 An upper bound for the optimal objective function value of P

2

is given by

max

0�z�N

k

2

z

(d

1

+ 1)

N

k

�z�kd

1

(d

1

!)

k

(d

2

+ 1)

z�k(k�1)d

2

=2

(d

2

!)

k(k�1)=2

; (19)

where d

1

= [(N

k

� z)=k] ; d

2

= [2z=fk(k � 1)g] ; N

k

=

1

2

P

k

i=1

Y

i;k

, and [x] denotes the

largest integer less than or equal to x.

Proof. Fixing z and ignoring the constraints (18), we can easily show that the object

function value

2

z

Q

i�j

x

ij

!

=

2

z

�

Q

k

i=1

x

ii

!

� �

Q

i<j

x

ij

!

�

(20)

is maximized when jx

ii

� x

jj

j � 1 for all i; j and jx

ij

� x

i

0

j

0

j � 1 for all i < j; i

0

< j

0

.

Therefore under the constraints

P

k

i=1

x

ii

= N

k

�z and

P

i<j

x

ij

= z, N

k

�z�kd

1

elements

in fx

11

; :::; x

kk

g are equal to d

1

+1 and the rest are equal to d

1

, and z � k(k� 1)d

2

=2 ele-

ments in fx

12

; :::; x

k�1k

g are equal to d

2

+1 and the rest are equal to d

2

. Substituting these

values into (20) and maximizing with respect to z yields (19). Since (19) is the maximum

objective function value for the relaxation problem of P

2

where the constraints (18) are

ignored, it is indeed an upper bound for the optimal objective function value of P

2

. Q.E.D.

We can see that the upper bound given in Theorem 2 is equal to the exact LP (k;Y

k

)

value when the components of Y

k

is equal or nearly equal to each other. For this reason,

10



this upper bound is a natural analogue of an upper bound for LP given by Mehta and

Patel (1983) for Freeman-Halton case.

Next we provide another (approximate) upper bound which has good property regard-

less of the pattern of Y

k

in the following Theorem.

Theorem 3 An approximate upper bound for the optimal objective function value of P

2

is given by

2

z

�

Q

i�j

g(x

�

ij

)

; z

�

=

X

i<j

x

�

ij

;

where

x

�

ii

=

Y

2

i;k

4N

k

; x

�

ij

=

Y

i;k

Y

j;k

2N

k

; i 6= j; (21)

and g(x) is an arbitrary continuous function satisfying g(n) = n! if n is an integer.

Proof. Replacing x! with the function g(x) de�ned above and ignoring the constraint that

x

ij

is integer, the continuous relaxation problem of P

2

is obtained as

P

0

2

: maximize

2

z

Q

i�j

g(x

ij

)

; z =

X

i<j

x

ij

;

subject to (18),(10) and x

ij

� 0. Clearly the optimal objective function value of P

0

2

is an

upper bound for the original integer optimizing problem P

2

.

On the other hand, the optimal solution of P

0

2

is approximated by (21) for the following

reason. Let p

1

be the reference empirical distribution given by

p

ij

= x

ij

=N

k

; i = 1; :::; k; j = i; :::; k;

where x

ij

satis�es (18) and p

0

be the Hardy-Weinberg distribution given by

p

ii

= p

2

i

; i = 1; :::; k;

p

ij

= 2p

i

p

j

; i = 1; :::; k � 1; j = i+ 1; :::; k:

We denote the Kullback-Leibler divergence from p

1

to p

0

as D(p

1

;p

0

). Since the optimal

solution of P

2

corresponds to p

1

whose occurrence probability is maximum when the

true distribution is p

0

, P

2

is approximately equivalent to minimizing D(p

1

;p

0

). Here the

decomposition

D(p

1

;p

0

) = D(p

1

;p

M

) +D(p

M

;p

0

) (22)

holds where p

M

is the conditional maximum likelihood estimate under the Hardy-Weinberg

model given by p

ij

= x

ij

=N

k

where x

ij

is given by (21). This prove the theorem. Q.E.D.

The decomposition (22) is an important property of the divergence D(p

1

; p

0

) and can

be derived directly for the present case. The meaning of this decomposition is elucidated

from the di�erential geometrical point of view. For detail, see Amari (1985, 1989) for

example.
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The standard example of g(x) is Gamma function, g(x) = �(x + 1). However, even

simpler function such as piecewise linear or piecewise quadratic function can also be used.

As the last result of this section, we provide the closed form expression of LP (2;Y

2

).

The problem that we consider is written as

P

3

: maximize

2

x

12

x

11

!x

12

!x

22

!

subject to

2x

11

+ x

12

= Y

1;2

; 2x

22

+ x

12

= Y

2;2

;

x

11

; x

12

; x

22

are non negative integers:

Theorem 4 The optimal solution X

�

= (x

�

11

; x

�

12

; x

�

22

) of P

3

is given as follows.

1. If Y

1;2

; Y

2;2

are both even numbers, let a(Y

2

) = (Y

1;2

Y

2;2

� 2)=f2(Y

1;2

+ Y

2;2

+ 3)g:

The optimal solution is

x

�

11

=

Y

1;2

2

� n; x

�

22

=

Y

2;2

2

� n; x

�

12

= n;

where

(

n = a(Y

2

) or a(Y

2

) + 1; if a(Y

2

) is integer;

n = ja(Y

2

) + 1j; otherwise:

2. If Y

1;2

; Y

2;2

are both odd numbers, let a(Y

2

) = f(Y

1;2

� 1)(Y

2;2

� 1) � 6g=f2(Y

1;2

+

Y

2;2

+ 3)g. The optimal solution is

x

�

11

=

Y

1;2

� 1

2

� n; x

�

22

=

Y

2;2

� 1

2

� n; x

�

12

= 2n+ 1;

where

(

n = a(Y

2

) or a(Y

2

) + 1; if a(Y

2

) is integer;

n = ja(Y

2

) + 1j; otherwise:

The proof of this theorem is straightforward and omitted.

5. Some numerical examples

In this section exact p values were computed by the network algorithm for problems of

various sizes. All the algorithms were programmed using C language on a PC running on

Linux (Pentium III, 930MHz).

First we analyze the data of r = 8; N = 30; y = (15; 14; 11; 12; 2; 2; 1; 3), displayed in

Figure 2. This data is taken from Figure 1 of Guo and Thompson (1992). Since the size

of this data is moderately large, they could not calculate the exact p value for this data

and instead evaluated the simulated value by Markov chain Monte Carlo method.

We computed the p value for this data by using a complete enumeration algorithm

proposed by Louis and Dempster (1987) and the network algorithm. As for computing

upper bounds for LP in the network algorithm, two upper bounds proposed in the previous

section (Theorem 2 and Theorem 3) were considered. Table 1 shows the p values and CPU

times.
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3 4 2 3 0 0 0 0

2 2 3 1 0 0 0

2 2 0 0 1 0
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0 0 0 1

1 0 0

0 0

0

Figure 2. Genotype frequency data from Guo and Thompson (1992).

Table 1 shows that the proposed algorithm performs better than the algorithm by

Louis and Dempster. The CPU times show that path was trimmed in Case 1 (in section

3) more e�ciently when using the approximate upper bound attained at MLE proposed

in Theorem 3. Strictly speaking, however, it is not guaranteed that the obtained p value is

exact when the approximate upper bound is used. This is because the optimal solution of

the relaxation problem P

0

2

is attained at (21) only approximately. Then an over trimming

may occur when the optimal solution of the relaxation problem is badly underestimated

than the true optimal solution of the original integer maximization problem. Indeed, the

p value by Network (LP by Thm. 3) in table 1 is slightly larger than the other two values.

But the di�erences are quite small and it can be considered that the accuracy of the

approximation is quite good in practice.

Next we analyze data sets of various sizes. Table 2 shows the p values and CPU times

for the examples of r = 5 that the pattern of y is uniform. Table 3 shows the p values

and CPU times for the various pattern of y for examples of N = 50. In each example,

the p value close to 0:05 is calculated. The number of all the tables (#F) and the ratio

of CPU time (complete enumeration to network) are also provided when the complete

enumeration is feasible.

Table 1. A comparison of the network and the Louis and Dempster algorithms for the

allele frequency data in Figure 1 (r = 8;#F = 250552020 � 2:5� 10

8

).

Algorithm p value CPU time

a

Complete enumeration 0.2159398218 44:43

Network (LP by Thm. 2) 0.2159398218 10:25

Network (LP by Thm. 3) 0.2159433639 8:21

a

CPU time is represented by min : sec.
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Table 2. A comparison of the network and the Louis and Dempster algorithms for the

allele frequency data of r = 5 (uniform case).

y Algorithm p value CPU time

a

(ratio

b

) #F

(20; 20; 20; 20; 20) Complete enumeration 0.0448476262 46:27 3:0� 10

8

Network (LP by Thm. 2) 0.0448476262 4:55 ( 9.45)

Network (LP by Thm. 3) 0.0448505876 4:03 (11.47)

(22; 22; 22; 22; 22) Complete enumeration 0.0443505782 106:56 7:0� 10

8

Network (LP by Thm. 2) 0.0443505782 9:06 (11.75)

Network (LP by Thm. 3) 0.0443514885 7:27 (14.35)

(24; 24; 24; 24; 24) Complete enumeration 0.0476068427 230:13 1:5� 10

9

Network (LP by Thm. 2) 0.0476068428 15:09 (15.20)

Network (LP by Thm. 3) 0.0476073528 12:21 (18.64)

(26; 26; 26; 26; 26) Complete enumeration infeasible

c

Network (LP by Thm. 2) 0.0490752414 27:42

Network (LP by Thm. 3) 0.0490747618 24:20

(28; 28; 28; 28; 28) Complete enumeration infeasible

c

Network (LP by Thm. 2) 0.0502934492 37:29

Network (LP by Thm. 3) 0.0502939082 30:38

(30; 30; 30; 30; 30) Complete enumeration infeasible

c

Network (LP by Thm. 2) 0.0516508563 55:49

Network (LP by Thm. 3) 0.0516511735 45:29

a

CPU time is represented by min : sec.

b

CPU time (complete enumeration) / CPU time (network)

c

Fail to compute p value within 360 CPU minutes.
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Table 3. A comparison of the network and the Louis and Dempster algorithms for the

allele frequency data of N = 50; r = 4 � 8.

y Algorithm p value CPU time

a

(ratio

b

) #F

(25; 25; 25; 25) Complete enumeration 0.0526117171 0:02.05 2:3� 10

5

Network (LP by Thm. 2) 0.0526117171 0:00.46 ( 4.46)

Network (LP by Thm. 3) 0.0526117171 0:00.40 ( 5.13)

(40; 30; 20; 5; 5) Complete enumeration 0.0566520911 0:18.28 2:0� 10

6

Network (LP by Thm. 2) 0.0566520911 0:04.25 ( 4.30)

Network (LP by Thm. 3) 0.0566520911 0:03.64 ( 5.02)

(30; 30; 30; 5; 5) Complete enumeration 0.0479355528 0:26.98 3:0� 10

6

Network (LP by Thm. 2) 0.0479355528 0:06.13 ( 4.40)

Network (LP by Thm. 3) 0.0479355528 0:05.48 ( 4.92)

(40; 30; 10; 10; 10) Complete enumeration 0.0682463011 1:41.53 1:1� 10

7

Network (LP by Thm. 2) 0.0682463011 0:17.50 ( 5.80)

Network (LP by Thm. 3) 0.0683323439 0:13.66 ( 7.43)

(20; 20; 20; 20; 20) Complete enumeration 0.0448476262 46:27 3:0� 10

8

Network (LP by Thm. 2) 0.0448476262 4:55 ( 9.45)

Network (LP by Thm. 3) 0.0448505876 4:03 (11.47)

(30; 30; 30; 4; 3; 3) Complete enumeration 0.0449065433 2:16 1:5� 10

7

Network (LP by Thm. 2) 0.0449065433 0:31 ( 4.39)

Network (LP by Thm. 3) 0.0449065433 0:28 ( 4.86)

(40; 30; 10; 10; 5; 5) Complete enumeration 0.0606964775 27:47 1:8� 10

8

Network (LP by Thm. 2) 0.0606964775 4:29 ( 6.20)

Network (LP by Thm. 3) 0.0607761595 3:28 ( 8.01)

(40; 20; 20; 8; 7; 5) Complete enumeration 0.0435034239 85:03 5:6� 10

8

Network (LP by Thm. 2) 0.0435027787 16:06 ( 5.28)

Network (LP by Thm. 3) 0.0435052514 12:12 ( 6.97)

(30; 30; 20; 8; 7; 5) Complete enumeration 0.0521534407 133:05 8:8� 10

8

Network (LP by Thm. 2) 0.0521534422 22:40 ( 5.87)

Network (LP by Thm. 3) 0.0521535686 19:16 ( 6.91)

(30; 20; 20; 20; 5; 5) Complete enumeration 0.0426073065 264:41 1:7� 10

9

Network (LP by Thm. 2) 0.0426073065 43:40 ( 6.06)

Network (LP by Thm. 3) 0.0426079323 35:39 ( 7.42)
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Table 3. (Continued.)

y Algorithm p value CPU time

a

(ratio

b

) #F

(40; 30; 20; 3; 3; 2; 2) Complete enumeration 0.0657281092 4:56 3:3� 10

7

Network (LP by Thm. 2) 0.0657281092 0:59 (5.02)

Network (LP by Thm. 3) 0.0657315171 0:49 (6.04)

(30; 30; 30; 3; 3; 2; 2) Complete enumeration 0.0640574757 7:17 4:8� 10

7

Network (LP by Thm. 2) 0.0640574757 1:22 (5.33)

Network (LP by Thm. 3) 0.0640574757 1:13 (5.99)

(40; 30; 10; 10; 5; 3; 2) Complete enumeration 0.0480403049 121:27 8:0� 10

8

Network (LP by Thm. 2) 0.0480403049 21:21 (5.69)

Network (LP by Thm. 3) 0.0480998952 16:48 (7.23)

(40; 25; 15; 10; 5; 3; 2) Complete enumeration 0.0493349444 228:40 1:5� 10

9

Network (LP by Thm. 2) 0.0493349444 40:43 (5.62)

Network (LP by Thm. 3) 0.0493396952 31:50 (7.18)

(40; 30; 20; 2; 2; 2; 2; 2) Complete enumeration 0.0658297002 13:57 9:2� 10

7

Network (LP by Thm. 2) 0.0658297002 2:38 (5.30)

Network (LP by Thm. 3) 0.0658300956 2:12 (6.34)

(40; 25; 25; 2; 2; 2; 2; 2) Complete enumeration 0.0531653738 15:37 1:0� 10

8

Network (LP by Thm. 2) 0.0531653738 3:09 (4.96)

Network (LP by Thm. 3) 0.0531653738 2:40 (5.86)

(40; 30; 18; 4; 2; 2; 2; 2) Complete enumeration 0.0492180369 45:16 3:0� 10

8

Network (LP by Thm. 2) 0.0492180369 8:59 (5.04)

Network (LP by Thm. 3) 0.0492180505 7:30 (6.04)

(40; 30; 15; 7; 2; 2; 2; 2) Complete enumeration 0.0422794862 114:12 7:6� 10

8

Network (LP by Thm. 2) 0.0422794862 22:58 (4.97)

Network (LP by Thm. 3) 0.0422816826 18:57 (6.03)

(40; 30; 15; 5; 4; 2; 2; 2) Complete enumeration 0.0641293814 217:22 1:4� 10

9

Network (LP by Thm. 2) 0.0641293814 33:32 (6.48)

Network (LP by Thm. 3) 0.0641321353 26:34 (8.18)

a

CPU time is represented by min : sec.millisec

b

CPU time (complete enumeration) / CPU time (network)
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Table 2 and table 3 show that the network algorithm performs uniformly better for

all these examples. CPU ratio shows that the e�ciency of the network algorithm is more

emphasized when the size of the problem is large. We see that the p values of examples

of moderate size (#F � 10

9

) can be calculated within about 30 minutes by the network

algorithm, while it took several hours by the complete enumeration. Comparing the upper

bound for LP, we see that the approximate upper bound proposed in Theorem 3 performs

better and the accuracy of the approximation is satisfactory.

It should be noted that the CPU time is greatly e�ected by p value when using

the network algorithm, while it takes same time regardless of p value by the complete

enumeration. In this study only p values about 0:05 are mainly considered, however,

larger p values can be more easily calculated by the network algorithm. Table 4 shows

CPU times to calculate various p values for the case of y = (30; 30; 20; 8; 7; 5).

Table 4. A comparison of the network and the Louis and Dempster algorithms for the

allele frequency data of y = (30; 30; 20; 8; 7; 5) for various p values.

CPU time

a

p Complete enumeration Network (LP by Thm. 2) Network (LP by Thm. 3)

0:9968 133:12 0:05.89 0:00.19

0:9101 133:09 0:18.56 0:05.82

0:8242 133:11 0:34.76 0:15.24

0:5933 133:09 1:45 1:07

0:4728 133:09 2:56 2:00

0:3178 133:09 5:23 4:02

0:2161 133:25 8:20 6:34

0:1070 133:31 14:58 12:22

0:0522 133:05 22:40 19:16

a

CPU time is represented by min : sec.millisec
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