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ABSTRACT

The problem of obtaining the maximum probability 2� c contin-

gency table with fixed marginal sums, R¼ (R1,R2) and

C¼ (C1, . . . ,Cc), and row and column independence is equivalent

to the problem of obtaining the maximum probability points

(mode) of the multivariate hypergeometric distribution MH(R1;

C1, . . . ,Cc). The most simple and general method for these problems

is Joe’s (Joe, H. (1988). Extreme probabilities for contingency tables

under row and column independencewith application toFisher’s exact

test. Commun. Statist. Theory Meth. 17(11):3677–3685.) In this article
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we study a family of MH’s in which a connection relationship is

defined between its elements. Based on this family and on a charac-

terization of the mode described in Requena and Martı́n (Requena,

F., Martı́n, N. (2000). Characterization of maximum probability

points in the multivariate hypergeometric distribution. Statist.

Probab. Lett. 50:39–47.), we develop a new method for the above

problems, which is completely general, non recursive, very simple in

practice and more efficient than the Joe’s method. Also, under weak

conditions (which almost always hold), the proposed method pro-

vides a simple explicit solution to these problems. In addition, the

well-known expression for the mode of a hypergeometric distribution

is just a particular case of the method in this article.

Key Words: 2� c contingency tables; Multivariate hypergeometric

distribution; Mode.

1. INTRODUCTION

Let x1, . . . . . . , xc denote the first row of a 2� c contingency table
with fixed row marginals R¼ (R1,R2) and fixed column marginals
C ¼ ðC1, . . . ,CcÞ and N ¼ �Ri ¼ �Cj, and let Z0 denote the set of
nonnegative integers. The set of possible 2� c tables given R and C
can be represented by

F0 ¼
�
ðx1, . . . , xcÞ 2 Zc

0jx1 þ � � � þ xc ¼ R1,

0 	 xh 	 Ch h ¼ 1, . . . , c
�

If we further assume the hypothesis of row and column indepen-
dence, it is known that the random vector x ¼ ðx1, . . . . . . , xcÞ has the
multivariate hypergeometric distribution (MH)

MHðR1 ; C1, . . . :,CcÞ ð1Þ

whose reference set is F0 . Thus, obtaining the maximum probability 2� c
table for fixed marginals R and C and row and column independence is
equivalent to obtaining the mode of distribution (1).

These problems appear in different applications, for example, as part
of the best-known and most efficient algorithm for Fisher’s exact test in
contingency tables: the Mehta and Patel’s network algorithm (Mehta and
Patel, 1980; 1983). The application of this algorithm to an observed 2� c
table requires, for many nodes of the network, the calculation of the
longest subpath from each node to the terminal node. This involves
many applications of calculation of the maximum probability 2� k
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table (k<c) for fixed marginals (or, equivalently, of the mode of
corresponding MH); see (Mehta and Patel, 1980; 1983; Joe 1988).

For c ¼ 2 we have the particular case of the hypergeometric distribu-
tion H(R1,C1,N) . It is known that the mode of this distribution is
obtained as an integer value x
1 subject to

R0
1ðC1 þ 1Þ � 1 	 x
1 	 R0

1ðC1 þ 1Þ ð2Þ

with R0
1 ¼ ðR1 þ 1Þ=ðN þ 2Þ; see Johnson et al. (1993). In the same way,

each marginal xj ð j ¼ 1, . . . . . . , cÞ of the MH (1) is distributed as
H(R1,Cj,N) and its mode will be an integer zj subject to

R0
1ðCj þ 1Þ � 1 	 zj 	 R0

1ðCj þ 1Þ ð3Þ

In the case of the MH, Boland and Proschan (1987) propose a
simple method of obtaining the mode in the particular case in which
Cj ¼ mkj , j ¼ 1, . . . , c, and R1 ¼ k1 þ � � � þ kc where m and k1, . . . , kc
are integer values. More general algorithms, like those proposed in
(Mehta and Patel, 1980, 1983; Joe, 1988), are found in the context of
the above-mentioned application and in its equivalent version of
obtaining the maximum probability 2� c table. The simplest and most
general is Joe’s (1988) (valid for r� c tables), which is based on a
necessary condition that generally involves the construction (by a
recursive way) of a subset of F0 and the inspection of the probability
of its tables in order to obtain the maximum probability 2� c table,
which is contained in that subset.

In this article we propose a completely general, non recursive and
very simple method of calculating the mode of the MH (or, equivalently,
the maximum probability 2� c table for fixed marginals), which is based
on a characterization of the mode in terms of a necessary and sufficient
condition described in Requena and Martı́n (2000) and it provides (under
weak conditions, which hold in the vast majority of cases) explicit expres-
sions for the mode. In fact, this method is so simple that it can be carried
out on paper or with a pocket calculator in a very short time, for any
value of c and for any R and C. Moreover, the proposed method is more
efficient than the Joe’s method, especially when c becomes large. In
practice, large values of c can arise when, for example, we consider the
number of patients with one specific characteristic (illness, symptom, . . .)
that arrive at a casualty department in each of c independent periods. So
if we take, say, 24 one-week periods, we will have one MH (or one 2� c
table) with c¼ 24. Finally, the methodology developed in this article will
provide a substantial reduction in the amount of computing time
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required in the application of Fisher’s exact test to a 2� c table. See Sec. 5
for further details.

The next result summarizes the above-mentioned characterization of
the mode of the MH.

Theorem 1.1. The necessary and sufficient condition so that x
 ¼
ðx
1, . . . . . . , x



c Þ is a mode of the MH (1) is that x
 2 S0, with S0 defined as

S0 ¼ x ¼ ðx1, . . . , xcÞ 2 F0jxi 	 mijðxÞ i 6¼ j
� �

ð4Þ

where for any point x 2 Zc
0 we denote

mijðxÞ ¼ ðxi þ xj þ 1ÞðCi þ 1Þ=ðCi þ Cj þ 2Þ ð5Þ

We will also make use of the following property: if x ¼ ðx1, . . . :, xcÞ
and x0 ¼ ðx01, . . . :, x

0
cÞ are two arbitrary points belonging to S0, then it is

true that

jx0h � xhj 	 1 1 	 h 	 c ð6Þ

This article is organized as follows: in Sec. 2 we define a particular
family F of MH’s to which the MH (1) belongs and study a connection
between the modes of its elements. The idea behind the method of
calculation, developed in Sec. 3, is to start with the modes of one of
the MH’s ofF, determined by the modes of the hypergeometric marginal
distributions of the MH (1), and arrive at the modes of the MH (1) via
this connection. In Sec. 4, there are several examples to illustrate the
simplicity and speed of the method.

2. RELATION BETWEEN THE MODES OF THE

MH’S OF A PARTICULAR FAMILY

Given the parameters R1,C1, . . . ,Cc of the MH (1), let F be the
family formed by all the MH’s He¼MH(R1þ e; C1, . . . ,Cc),
�R1	 e	N�R1 , and let Fe be the reference set of He, i.e.,

Fe ¼

n
x¼ ðx1, . . . ,xcÞ 2 Zc

0

���X
h

xh ¼ R1 þ e, 0	 xh 	 Ch h¼ 1, . . . ,c
o

Note that the extreme distributions of F, H�R1
, and HN�R1

, are
reduced to the degenerated distributions in (0, . . . ,0) and in
ðC1, . . . ,CcÞ, respectively. On the other hand, from Sec. 1, for each He
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we will have a subset of Fe (which we will denote by Se) defined as in
expression (4), i.e.,

Se ¼ x ¼ ðx1, . . . , xcÞ 2 Fejxi 	 mijðxÞ i 6¼ j
� �

ð7Þ

Se has the same properties as the S0, in particular it contains and only
contains the modes of He and inequality (6) is also satisfied. Moreover, it
is obvious that for e¼ 0, H0 coincides with the MH (1), and so this
distribution belongs to F.

If x has distribution (1), the family F is the same type as the family
of the conditional distributions of (x1, . . . ,xk� 1, xkþ 1, . . . ,xc/xk ) , which
are MH(R1� xk; C1, . . . ,Ck-1,Ckþ1, . . . ,Cc), for all possible xk values of
the kth coordinate of x. The latter family is discussed in Requena and
Martı́n (2000), where a connection relationship between the modes of its
MH’s is defined and some results are obtained. For the family F here we
are going to define similar relations between the modes of its elements.
The study of these relations will allow us to develop a method of
calculation of the mode of the MH (1).

Definition 2.1. We say that two points, x 2 Se and x0 2 Seþ1ð�R1 	

e < N � R1Þ are connected by the vth coordinate (or connected by v)
when x0v � xv ¼ 1 and x0j ¼ xj for all j 6¼ v are satisfied.

That is to say, two points connected by v coincide in all the
coordinates except in the vth, in which they differ by one unit.

Definition 2.2. We say that two points, x 2 Se and x0 2
Seþ1ð�R1 	 e < N � R1Þ and, are connected when there is a vth
coordinate so that these points are connected by v.

Definition 2.3. Given two integer values, p and p’, such that �R1 	 p <
p0 	 N � R1, we say that the finite succession of points

Cð p, p0Þ ¼ x½e� 2 Se

� �
e¼p, pþ1,..., p0

is a chain when for every e ð p 	 e < p0Þ x½e� and x[eþ1] are connected. Also,
given any two points of the chain C( p, p0), we always say that these points
are communicated by this chain.

Thus for each value of e, we will have a point x[e] (link) of the chain
and each link is connected to the previous one and the following one.
Moreover, given two arbitrary points of the chain, x[a] and x[b] (a<b),
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we will be able to go from x[a] to x[b] (or vice versa) through the successive
intermediate links of the chain, which implies executing b-a steps from
x[e] to x[eþ1] (or from x[eþ1] to x[e] ) a	 e<b.

The following results (Theorem 2.1 and Theorem 2.2) are presented
without proof because they are similar to those presented in Requena and
Martı́n (2000). Firstly, given two contiguousMH’s ofF,He, andHeþ1, the
following theorem characterizes the connection between their modes.

Theorem 2.1. For any pair of distributions, He and Heþ1, of F, given
x 2 Se there will be another point x0 2 Seþ1, connected to it by v, if and
only if v is a value of j (1	 j	 c) which minimizes the expression
(xjþ 1)/(Cjþ 1). Reciprocally, given x0 2 Seþ1 another point x 2 Se will
exist, connected to it by u, if and only if u is a value of j (1	 j	 c) which
minimizes the expression �x0j=ðCj þ 1Þ.

vth and uth coordinates with the condition of Theorem 2.1 always
exist, although they are not necessarily unique. Therefore we can imme-
diately deduce the following result.

Corollary 2.1. Given two sets, Se and Seþ1, each point of one set is con-
nected to at least one point of the other, i.e., given the distributions He and
Heþ1 of F, each mode of one of them is connected to at least one mode of
the other.

Theorem 2.2. Let Sa and Sb (a<b) correspond to two MH’s of F. Given a
point of one of the sets, in the other set a point will always exist such that
the two points are communicated by a chain.

This theorem states that given two MH’s of F, each one of the
modes of one of them is always communicated by a chain with at least
one mode of the other. Finally, the following theorem states the relation-
ship between the coordinates of two points communicated by a chain.

Theorem 2.3. If x½a� 2 Sa (with coordinates xaj) and x½b� 2 Sb (with
coordinates xbj) (b¼ aþ d, d>0) are two points communicated by a chain
C(a, b), then xbj¼ xajþ qj holds, where qj is the number of pairs of points
(x[e] and x[eþ 1], a 	 e< b) of C(a,b) in which both points are connected
by j. Moreover, 0	 qj	 d and �qj ¼ d always hold.

Proof. This theorem follows from the fact that given two points x[a]
and x[b], communicated by a chain C(a, b), we can go from one point
to the other via the intermediate points (links) of the chain. This implies
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performing d¼ b� a steps from x[e] to x[eþ 1] a	 e<b, where in each one
of these steps the jth coordinate through which the two points are con-
nected increases by 1 when passing from x[e] to x[eþ 1] with the rest of the
coordinates remaining constant. Therefore xbj¼ xajþ qj with qj� 0. As
the jth coordinate is not necessarily the same in all the steps (in fact it is
usually different in each step) qj 	 d holds. Finally, as we have stated
before, it is immediate that �qj ¼ d:

3. CALCULATING THE MAXIMUM

PROBABILITY POINTS OF THE MH

Let D be the set of points whose coordinates are modes of the
marginals xj of distribution (1), i.e.,

D ¼
�
z ¼ ðz1, . . . , zcÞ 2 Zc

0 jR0
1ðCj þ 1Þ � 1 	 zj 	 R0

1ðCj þ 1Þ

j ¼ 1, . . . , c
�

ð8Þ

Given a z 2 D, let � ¼ �zj � R1. From expression (8) we can directly
obtain a maximum and a minimum for �zj and we can easily deduce
that �fð1� R0

1Þðc� 2Þ þ 1g 	 � 	 R0
1ðc� 2Þ þ 1. However as zj� 0 we

have -R1	 �, and as zj	Cj we have �	N�R1. This is summarized in
the following result.

Lemma 3.1. Given the MH (1) and any point z 2 D,

maxð�R1,R


1 � cÞ 	 � 	 minðN � R1,R



1Þ ð9Þ

always holds, where R

1 ¼ R0

1ðc� 2Þ þ 1.
On the other hand, for a particular value of � satisfying inequality

(9), we define the set

D� ¼ z 2 D
���X zj � R1 ¼ �

n o
We will see how each nonempty D� is used as a starting point to get the
modes of the MH (1).

Theorem 3.1. Given the MH (1) and the family F, if � is an integer such
that D� is nonempty, then D� coincides with the set S� corresponding to H�

of F.

Proof. Let z 2 D�. Then we have

0 	 zj 	 Cj ,
X

zj ¼ R1 þ � ð10Þ

Maximum Probability 23 c Tables 1743



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

and inequality (3) holds for j¼ 1, . . . ,c . From expression (3) we can
deduce

zi=ðCi þ 1Þ 	 R0
1 	 ðzj þ 1Þ=ðCj þ 1Þ i 6¼ j ð11Þ

and therefore zi 	 mijðzÞ, i 6¼ j holds. Finally, from Eq. (10) we get
z 2 S�. Thus S� contains the points of D�. In order to demonstrate that
S� only contains the points of D�, consider that S� contains more than one
point (the proof would be trivial if S� only contains one point). Let z 2 S�

such that z 2 D�, and let z0 2 S�:To prove that z0 2 D�, it is sufficient that

R0
1ðCj þ 1Þ � 1 	 z0j 	 R0

1ðCj þ 1Þ ð12Þ

holds for j¼ 1, . . . , c. Suppose that z and z0 only differ in t coordinates. As
z 2 D�, expression (12) holds for the remaining c-t coordinates of z0. On
the other hand, from expression (6) and since �zi ¼ �z0i, t will be an even
number and these t coordinates will be structured in t/2 pairs, such that if
(zi , zj) is one of these pairs in z, its corresponding pair ðz0i, z

0
jÞ in z0 will

satisfy z0i ¼ zi þ 1 and z0j ¼ zj � 1: Moreover, as z0 2 S�, for each one of
these pairs we have z0i 	 mijðz

0
Þ, from which

z0i=ðCi þ 1Þ 	 ðz0j þ 1Þ=ðCj þ 1Þ ð13Þ

follows. Finally, from inequalities (11) and (13), we have z0i=ðCi þ 1Þ ¼
ðz0j þ 1Þ=ðCj þ 1Þ ¼ R0

1. Therefore, the t coordinates of z
0 in which z0 and z

do not coincide also satisfy inequality (12) and this concludes the proof.
From this theorem and as we already know that Se contains and only

contains the modes of He, we can directly deduce the following result.

Corollary 3.1. Given the MH (1), the family F and a nonempty D�, it is
true that D� contains and only contains the modes of the MH(R1þ �;
C1, . . . ,Cc). In particular if D0 is nonempty, D0 contains and only contains
the modes of the MH (1).

As we have seen: (from Theorem 1.1) the set S0 contains and only
contains the modes of the MH (1), (from Theorem 3.1) D� coincides with
S� if it is nonempty, and (from Theorem 2.2) starting from all the points
of D� (or S�) we will arrive by different chains at all the points of S0. From
now on we will use �
 to denote the value � of the set D� that we start
from, and m ¼ j�
j will be the number of steps to arrive at S0. It is
obvious that in practice we will take as �
 the value of � that is nearest
to 0. In the particular case where �
 ¼ 0 it is because D0 is nonempty and
we will not have to execute any intermediate steps, D0 (or S0) would just
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be the set of all the modes of the MH (1), as we said in Corollary 3.1.
Likewise, we will use z
 to denote the point of D�* that we start from to
arrive at a mode of the MH (1) which we will denote by x
.

If the modes of all the marginals xj are unique, D will have only one
point z and therefore only one nonempty D� will exist. In these cases it is
clear that �
 ¼ � and z
 ¼ z. However, if there are q marginals xj (q	 c)
whose modes are not unique, we can see from expression (3) that for each
one of these xj, R0

1ðCj þ 1Þ will be an integer and there will be two
modes: Mj ¼ R0

1ðCj þ 1Þ and M0
j ¼ R0

1ðCj þ 1Þ � 1. In this situation, the
set D will have 2q points and we will have several nonempty sets D�.
Moreover, taking zj ¼ M0

j and zj ¼ Mj for all these q marginals we
would obtain respectively the minimum value (�1) and the maximum
value (�2) of � satisfying that D� is nonempty. And for any � such that
�1 	 � 	 �2,D� will be nonempty. Thus, if �1>0, then �
 ¼ �1; if �2 < 0,
then �
 ¼ �2; otherwise, �



¼ 0. Finally, z
 2 D�
 will be a point z 2 D in

which we take zj ¼ M0
j for �2� �
 of the above q marginals and we take

zj ¼ Mj for the remaining q� (�2� �
). Note that D�* has a unique point
z
 except when �
 ¼ 0.

For �
 6¼ 0 ði:e:, m > 0Þ, the procedure to go from the point z
 2 D�*

to a point x
 2 S0, and to get the coordinates of x
 from the coordinates
of z
, is described as follows. Let us define

� ¼
�1 if �
 > 0
1 if �
 < 0

�
ð14Þ

(1) Start with z
 ¼ ðz
1, . . . : , z


c Þ 2 D�
 : Set k ¼ 1 and z0 ¼ z
:

(2) Step k:

(i) By application of Theorem 2.1, take a point z00 2 S�
þ�k

connected to z0 by, say, v.
(ii) Set evk ¼ 1 and ejk ¼ 0, 1 	 j 	 c; j 6¼ v:
(iii) For j ¼ 1, . . . , c, calculate

qjk ¼
Xk

h¼1
ejh ð15Þ

(iv) The point z00 will have the coordinates z
j þ �qjk,
j ¼ 1, . . . , c:

(3) If k < j�
j, then set k ¼ kþ 1, z0 ¼ z00 and go to (2). Otherwise,
continue.

(4) The last z00 (which we denote by x
) is just a point of S0, i.e.,
a mode of the MH (1).
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Furthermore, as every point of S0 is necessarily communicated with some
point of D�*, its coordinates will always be expressed in the previous way.
This process demonstrates the following theorem, which summarizes the
expression of the mode of the MH (1).

Theorem 3.2. Given z
 2 D�
 for �
 defined above, x
 with coordinates

x
j ¼
z
j if �
 ¼ 0
z
j þ �qjm if �
 6¼ 0

�
j ¼ 1, . . . , c ð16Þ

is a mode of the MH (1), where m ¼ j�
j and � and qjm are given in the
expressions (14) and (15) respectively. Reciprocally, any mode of distribu-
tion (1) will be expressed in the form (16) for some z
 2 D�
 :

3.1. Practical Algorithm

From a practical point of view and given the point z0 prior to each
step, let us redefine the expressions in Theorem 2.1 as

wj ¼
�z0j=ðCj þ 1Þ if �
> 0
ðz0j þ 1Þ=ðCj þ 1Þ if �
< 0

�

for j¼ 1, . . . ,c. At the first step z0 ¼ z
and we will denote its correspond-
ing wj’s by w


j ’s. On the other hand, let J be a set of s integer values,
j1, . . ., jr, jrþ1, . . ., js such that

w

j1 	 � � � � 	 w


jr < w

jrþ1

¼ � � � � ¼ w

js < w


j ; j 6¼ j1, . . . , j 6¼ js ð17Þ

where 0 	 r < m, s is the smallest integer such that m 	 s and we assume
that the order between the elements of J is determined by expression (17),
though the order is indifferent between the elements h and h0 when
w

h ¼ w


h0 . Also, for 0 	 k 	 s, let Jk be the subset formed by the first k
elements, j1, . . . , jk, of J, with the understanding that J0 is the empty set.
From the above procedure it is easy to see that the only coordinates
involved, in order to get all the modes of the MH (1), are the
j1th, . . . , jsth corresponding to the elements of J, though in order to get
one mode it suffices to consider the coordinates corresponding to the
elements of Jm. Moreover, at each step the wj’s involved in the application
of Theorem 2.1 are obtained from the wj’s of the previous step (starting
from the w


j ’s at the step 1). In this regard, let us define

Wið jÞ ¼ w

j þ i=ðCj þ 1Þ ð18Þ

for 0 	 i 	 m� h when j ¼ jh 2 Jm and for i ¼ 0 when j 2 J � Jm.
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In order to get one mode, in the first application of Theorem 2.1
(step 1 of (2) above) wj ¼ W0ð jÞ; j 2 Jm, and we have to take the
minimum of these values. If this minimum is reached on the, say, vth
coordinate (� 2 JmÞ, then z0 and z00 are connected by v. So the wj’s, j2 Jm,
in the second application (step 2 of (2) above) are the same as in the
previous step except that W0(v) is replaced by W1(v). Next, we have to
take the minimum of these wj’s, j2 Jm, again, and so on. After the m
steps, it is easily seen that it suffices to know the m lower values of the
Wi( j)’s and their corresponding values j’s. Thus, the method of calculat-
ing one mode x
of the MH (1) can be implemented as follows.

(1) From expression (3), obtain a vector z ¼ ðz1, . . . , zcÞ 2 D� with
� ¼ �zj � R1:

(2) If z is unique, then �
 ¼ � and z
 ¼ z. Otherwise, get �
 and z
 as
shown above.

(3) If �
 ¼ 0, then x
 ¼ z
 and the algorithm terminates. Otherwise,
continue.

Remarks. For �
 ¼ 0, z
 is not necessarily unique. So the set of all z
’s
will be the set of all modes of the MH (1). For �
 6¼ 0, z
 is unique.

(4) Calculate w

j for j¼ 1, . . . , c and get J and Jm.

(5) From Eq. (18), calculate the necessary Wi( j)’s in order to get
the m lower of these values Wi( j )’s, j2 Jm and any i. Also
make a note of the value j associated with each one of these
m values.

Remarks. To do this, note that for each j;Wið jÞ < Wi0 ð jÞ according as
i<i0 and all W0ð jÞ’s are already calculated and ordered since W0ð jÞ ¼ w


j .
Because of this, and since in the majority of cases m is very close to 0 (see
Sec. 5 below), very few of the Wi( j)’s will be necessary to calculate. Also,
note that the above set of m lower values is not necessarily unique.

(6) Count how many of the m lower values Wi( j)’s obtained
in (5) are associated with the jth coordinate ð j 2 JmÞ. Denote
this count by nj (obviously�nj ¼ m). Then obtain
x
 ¼ ðx
1, . . . , x



c Þ as

x
j ¼
z
j þ �nj if j 2 Jm

z
j if j =2 Jm

(
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In order to get all the modes of the MH (1) (if the mode is not unique)
we can use the same algorithm described above with Jm replaced by J.
Then, each one of the sets containing m lower values Wið jÞ’s, j 2 J, will
yield one mode. Moreover, note that if we have already obtained one
mode (applying the algorithm with Jm), then we do not need any addi-
tional calculations in order to get the remaining modes. So, a new general
expression of the mode x
 ¼ ðx
1, . . . , x



c Þ of the MH (1) can be written as

x
j ¼
z
j þ �nj if m > 0 and j 2 J
z
j otherwise

�

for z
 2 D�
 and some set of m lower values Wið jÞ’s, j 2 J:
However, in the vast majority of cases, it is not necessary to imple-

ment the complete algorithm, it suffices to know z
, the w

j ’s and J. Note

that if �
 ¼ 0, then x
 ¼ z
as shown at the step (3) above. Moreover, for
�
 6¼ 0, , we can get more explicit expressions for the mode of the MH (1)
in terms of z
 and J if certain simple conditions are satisfied. This con-
ditions are easily checked and one of them almost always holds (see Sec. 5
below). In this sense, we next present some results which follow directly
from the Theorem 3.2 and from the algorithm described above.

Corollary 3.2. For m>1, given z
 2 D�
 and J2 ¼ f j1, j2g, x
 with
coordinates

x
j ¼
z
j þ �m if j ¼ j1
z
j otherwise

�

( j¼ 1, . . . ,c) is a mode of the MH (1) if and only if the following condition
holds:

ðw

j2
� w


j1
ÞðCj1

þ 1Þ � m� 1 ð19Þ

Moreover, if the condition (19) with strict inequality holds, then the
mode of the MH (1) is unique.

Corollary 3.3. Given z
 2 D�
 and J ¼ f j1, . . . , jsg, if x
 has the coordinates

x
j ¼
z
j þ � if j 2 J 0

z
j otherwise

�
ð20Þ

( j¼ 1, . . . ,c) where J 0 is a subset of J, then the following results are true.
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(i) For m¼ 1, the MH (1) has s modes, which (for h¼ 1, . . . ,s) are
given by Eq. (20) with J 0

¼ f jhg jh 2 J:
(ii) For m>1, x
 given by Eq. (20) with J 0

¼ Jm is a mode of the
MH (1) if and only if r¼ 0 or

ðw

jm
� w


jh
ÞðCjh

þ 1Þ 	 1 ð21Þ

holds for h¼ 1, . . . ,r (r>0), where r is the integer value arising
from the definition of J.

(iii) For m>1, if r¼ 0 or the condition (21) with strict inequality
holds for h¼ 1, . . . ,r (r>0), then the MH (1) has s�r

m�r

	 

modes,

which are given by Eq. (20) with J 0 being a subset formed by
the elements of Jr and m-r elements of J� Jr.

4. EXAMPLES

As the application of the proposed method is fairly straightforward
when j�
j ¼ 0 or j�
j ¼ 1 (even for j�
j ¼ 2, it is very easy), let us consider
three examples with j�
j > 2 in order to illustrate our method in a better
way. Here we will use the notation a|t to indicate that the value a is
repeated t times.

Example 1. Consider the MH(224; 8, 12|2, 13, 14, 17, 19, 21, 24, 27|3, 28,
31) or the 2� 14 table with R¼ (224, 56) and C¼(8, 12|2, 13, 14, 17, 19,
21, 24, 27|3, 28, 31). Firstly we obtain z¼ (7, 10|2, 11|2, 14, 15, 17, 19,
22|3, 23, 25) with �¼ 4. As z is unique, we have �*¼ 4, m¼ 4, and z
 ¼ z .
Next we calculate the values w


j ’s, giving �0.778, �0.769|2, �0.786,
�0.733, �0.778, �0.75, �0.773, �0.76, �0.786|3, �0.793, �0.781, for
j¼ 1, . . . ,14, respectively. Therefore J¼ {13, 4, 10, 11, 12}, J4¼ {13, 4,
10, 11} and r¼ 1. As the condition (21) with strict inequality holds for
h¼ 1, from Eq. (20) with J 0

¼ J4 we have that x


¼ (7, 10|3, 11, 14, 15, 17,

19, 21|2, 22|2, 25) is one mode of the above MH. Likewise, x
 is the first
row of one maximum probability 2� 14 table for the given marginals. In
addition, if we want to get all the modes (or all the maximum probability
2� 14 tables), from the Corollary 3.3 the total number of modes is 4. One
of them is x
 and the three remaining can be written directly from Eq. (20)
by taking {13, 4, 10, 12}, {13, 4, 11, 12} and {13, 10, 11, 12} as J 0.

Example 2. Consider the MH(28; 4|4, 7|4, 8, 9, 12|3, 43) or the 2� 14
table with R¼ (28, 112) and C¼ (4|4, 7|4, 8, 9, 12|3, 43). Firstly we obtain
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z¼ (1|9, 2|4, 8) with �¼�3, and this z is unique. Thus, �*¼�3, m¼ 3,
z*¼ z , the values w


j ’s ( j¼ 1, . . . ,14) are, respectively, 0.4|4, 0.25|4, 0.222,
0.3, 0.231|3, 0.205 and J¼ {14, 9, 11, 12, 13}. Since conditions (19) and
(21) do not hold, we have to implement the complete algorithm. So, if we
need only one mode, then we consider J3¼ {14, 9, 11} and it suffices to
calculateW1(14)¼ 0,227 andW1(9)¼ 0.333 in order to get the three lower
values Wið jÞ’s, j 2 J3, which are W0(14)¼ 0.205, W0(9)¼ 0.222, and
W1(14)¼ 0,227, corresponding to the 14th, 9th, and 14th coordinates,
respectively. Thus n14¼ 2, n9¼ 1, n11¼ 0 and x
 ¼ (1|8, 2|5, 10) is one
mode of the above MH. On the other hand, note that W0(14), W0(9),
and W1(14) above constitute the only set of three lower values
Wið jÞ’s; j2 J and, therefore, the mode x
 is unique. Likewise, x
 is the
first row of the only maximum probability 2� 14 table for the given
marginals.

Example 3. For the MH(24; 4|4, 5|5, 8, 9, 17, 69) or the 2�13 table with
R¼ (24, 120) and C¼ (4|4, 5|5, 8, 9, 17, 69), as in the previous examples,
we obtain z¼ (0|4, 1|7, 3, 11), �¼�3, �
¼�3, m¼ 3, z
 ¼ z , the w


j ’s
( j¼1, . . . ,13) are 0.2|4, 0.333|5, 0.222, 0.2, 0.222, 0.171 and J¼ {13, 1, 2,
3, 4, 11}. As the condition (19) holds (but not with strict inequality),
x
 ¼ (0|4, 1|7, 3, 14) is one mode, though it is not unique. If we want
to get all the modes, then we implement the algorithm considering J. We
calculate W1(13)¼ 0.186 and W2(13)¼ 0.2. Note that the set of three
lower values W0(13)¼ 0.171, W1(13)¼ 0.186, and W2(13)¼ 0.2 yields
the preceding mode x
 and that there exist five additional sets of three
lower values Wið jÞ’s; j 2 J, which can be obtained directly by replacing
W2(13) by one of the W0(1), W0(2), W0(3), W0(4), W0(11) (all equal to
0.2) in the set before. So we can write directly the five corresponding
(additional) modes. Likewise, these six modes above just correspond
with the first rows of the six unique maximum probability 2� 13 tables
for the given marginals.

5. DISCUSSION

In order to explore the characteristics and the performance of the
proposed method, we have carried out a simulation study in which we
have generated (and inspected) more than 1.5� 1011 MH’s, without repe-
tition of equivalent MH’s, with 3	 c	 14 and values of N depending on
c, but always less than 200 (we say the same for the corresponding 2� c
tables). From the previous sections and based on the valuable experience
provided by the above study, we can to point out the following aspects.
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In spite of the bounds for � (see Lemma 3.1), m (or �
) is usually very
close to zero. In fact, we have verified it by above study. Globally we have
obtained that 45.0, 72.0, 96.8, and 99.9% of the inspected MH’s have the
value m less than or equal to 1, 2, 4, and 6, respectively, though these
percentages depend on c, for example, they are 63.0, 92.4, 100, and 100%
for c¼ 7 and 26.4, 48.4, 90.0, and 99.7% for c¼ 13.

In the vast majority of cases it is not necessary to implement the
complete algorithm, because we can use an explicit expression for the
mode in terms of z
 and J as shown in Corollaries 3.2 and 3.3 (or
simply because x
 ¼ z
 when m¼ 0). In this sense, an explicit expression
always exists for m<3 and, in general, it almost always exists. From
our study about 98% of the inspected MH’s were solved by an explicit
expression. Moreover, when it is necessary to carry out the complete
algorithm, from our study we have seen that values m tend to be even
smaller than usual. In addition, this algorithm does not involve a
recursive process and it does not require checking or calculating the
probability of any point of the MH (or 2� c table).

Because of these reasons, the proposed method is very easy and very
fast in practice. In fact, it can always be carried out on paper or with a
pocket calculator in an easy way and in a short time, for any value of c
and for any R and C. Instead, implementation of the Joe’s method with a
pocket calculator could be very tedious, especially when value c becomes
relatively large, because it could require many recursive applications of
Theorem 6 of Joe (1988) and the inspection of the probability of the 2� c
tables which result from this recursive process. This is so because it is
based only on a necessary condition, but our method is based on a
necessary and sufficient condition. Moreover, though the computation
times of the Joe’s method (when c is not too large) are not important if
we use a computer, according to our experience (from the above study)
the proposed method is always faster than Joe’s, and the ratio of times
‘‘Joe’s method/proposed method ’’ increases as c becomes larger, with this
ratio being very large in many cases when c takes a large value. So, in
order to get the mode(s) of the MH (or equivalent problem in 2� c
tables) we can say that the proposed method is more efficient than Joe’s.

On the other hand, using the methodology developed in this article
we can straightforwardly construct new practical algorithms which, in a
recursive way and taking the mode of the MH as a starting point, allow
us to determine new maximum probability points, like the maximum
probability points of the MH with fixed value xk at the kth coordinate
(for each one of the possible values xk) and the mode of the conditional
MH given the value xk of the kth coordinate. Likewise, if we apply the
results described in this article to the Mehta and Patel’s network
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algorithm for a 2� c table, we will have two advantages. First, we will
compute the longest subpaths (from all nodes) in a recursive way and in a
negligible time. Second, we will obtain a drastic reduction in the number
of inequalities that we have to check in each node. Thus, we will achieve a
substantial reduction in the amount of computing time required in the
network algorithm. Moreover, the results in this article can be used as a
starting point to get an extension to the case of r� c tables (r>2),
although more investigation is needed in this regard.

Finally, note that for c¼ 2 the proposed method is reduced to the
known expression (2) of the mode of the hypergeometric distribution.
Also, it is easily seen that this method gives us exactly the result given
in Boland and Proschan (1987) for the particular case of MH proposed
there.
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