
Computational Statistics & Data Analysis 51 (2006) 490–498
www.elsevier.com/locate/csda

A major improvement to the Network Algorithm for Fisher’s Exact
Test in 2×c contingency tables

F. Requenaa,∗, N. Martín Ciudadb

aDepartment of Statistics and O.R., University of Granada, 18071 Granada, Spain
bDepartment of Mathematics, University of Extremadura, 10004 Cáceres, Spain

Received 3 March 2005; received in revised form 6 September 2005; accepted 6 September 2005
Available online 5 October 2005

Abstract

Based on the Network Algorithm proposed by Mehta and Patel for Fisher’s Exact Test on 2 × c contingency tables, the relations
between maximum subpath lengths are studied. A recurrence relation between maximum subpath lengths is obtained and an ordering
of the maximum path lengths is established. Based on these results, some modifications in the Network Algorithm for 2×c tables are
proposed. These modifications produce a drastic reduction in computation time which in some cases is higher than 99.5% compared
to StatXact-5. Moreover, and with purely practical objectives, a grouping in intervals of subpath lengths of the Network Algorithm
is proposed which enable us to obtain the p-value with a limited number of exact figures which is more than sufficient in practice,
while with a drastic reduction in the amount of memory required and additional reductions in computational time. The proposed
modifications are valid for any 2 × c contingency table, and are compatible with other improvements already proposed for the
Network Algorithm, and especially with the Hybrid Algorithm of Mehta and Patel.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let Xo be an observed 2 × c contingency table, with fixed column sums (C1, . . . , Cc) and fixed row sums (R1, R2),
and N =∑Ri =∑Cj . Let us denote by F the set of all the possible 2×c tables with the same marginal totals as Xo, by
X a 2×c table of F and by (x1, . . . , xc) the first row of X. It is known that, if we assume the hypothesis of row and column
independence, the random vector (x1, . . . , xc) has a Multivariate Hypergeometric distribution MH(R1; C1, . . . , Cc)

and

P(X) = 1

D

c∏
j=1

(
Cj

xj

)
, X ∈ F, D =

(
N

R1

)
.

The best algorithm to carry out Fisher’s Exact Test is the Network Algorithm (NA) proposed by Mehta and Patel
(1980, 1983, 1986a) (see Hirji and Johnson, 1996). The NA for a 2 × c table can be summed up as follows. A directed
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acyclic network of nodes and arcs is built. The nodes are structured in c + 1 stages, labelled as c, c − 1, . . . , 1, 0. In
any stage k there is a set of nodes and each of them is labelled by a pair of integer values

(
k, R(k)

)
with

max
{
0, R1 − N + N(k)

}
�R(k) � min

{
N(k), R1

}
,

where N(k) = C1 + · · · + Ck . In particular, in stage c there is a single node
(
c, R(c)

)
with R(c) = R1 (initial node) and

in stage 0 there is also a single node
(
0, R(0)

)
with R(0) = 0 (terminal node). The R(k) values of the nodes of any other

stage k form a series of positive consecutive integer numbers. The arcs emanate from each node of stage k and are
directed towards a node of stage k − 1. Each node of stage k − 1 which is joined by an arc with a node

(
k, R(k)

)
of

stage k is a daughter node (DN) of
(
k, R(k)

)
, which is known as the mother node (MN). Each node of stage k − 1 is

always a DN of at least one MN of stage k. Each arc which reaches a node is connected to each one of the arcs which
emanate from that same node. A path across the network is defined as a series of connected arcs which emanate from
the initial node and reach the terminal node passing through c − 1 intermediate nodes. Each intermediate node of a
path divides the path into two subpaths.

The network is constructed in such a way that each subpath from the node
(
k, R(k)

)
to the terminal node corresponds

to just one 2×k subtable with row sums
(
R(k), N(k) − R(k)

)
and column sums (C1, . . . , Ck). More specifically, subpath(

k, R(k)

) → (
k − 1, R(k−1)

) → · · · → (0, 0) corresponds to the 2×k subtable whose first row is xj =R(j)−R(j−1), j=
1, . . . , k. From now on, we will represent each subpath by its corresponding vector (x1, . . . , xk). For k = c we will
have a one-to-one correspondence between all of the paths from the initial node to the terminal node and the set F.

The length of the arc which joins an MN
(
k, R(k)

)
with its DN

(
k − 1, R(k−1)

)
is defined by

�
(
k, R(k), R(k−1)

)=
(

Ck

R(k) − R(k−1)

)
, (1)

and the length of a path (or subpath) is defined as the product of the length of their arcs. Therefore, the length of the
path which corresponds to X ∈ F will be DP(X).

The p-value associated to the observed Xo table is given by

p-value
(
Xo)=

∑
X∈F o

P(X),

where F o = {X |X ∈ F, P(X)�P (Xo)}. The NA calculates this p-value by identifying and adding up the lengths of
all of the paths in the network which are not longer than DP(Xo), but with no need to explicitly enumerate each path.
The decision as to whether or not the paths of the network contribute to the p-value takes place based on sets of paths
and this decision is made in the nodes of the network. For each DN

(
k − 1, R(k−1)

)
of the MN

(
k, R(k)

)
we must check

if one of the following conditions holds:

PAST �
(
k, R(k), R(k−1)

)
LP
(
k − 1, R(k−1)

)
�DP

(
Xo) (2)

and

PAST �
(
k, R(k), R(k−1)

)
SP
(
k − 1, R(k−1)

)
> DP

(
Xo) , (3)

where LP
(
k − 1, R(k−1)

)
and SP

(
k − 1, R(k−1)

)
are the lengths of the longest and shortest subpath, respectively, from

the DN
(
k − 1, R(k−1)

)
to the terminal node, and PAST is the length of a subpath from the initial node to the MN(

k, R(k)

)
(see Mehta and Patel, 1983). If Q is the set of all of the paths which pass through the DN

(
k − 1, R(k−1)

)
and

which have a common subpath (of length PAST) to the MN
(
k, R(k)

)
, then no path of Q will contribute to the p-value

if (3) holds and all of the paths of Q will contribute to the p-value if (2) holds, in which case the overall contribution is(
N(k−1)

R(k−1)

)
�
(
k, R(k), R(k−1)

)
PAST.

In both cases, the paths of Q are not considered again in the NA.
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Since Mehta and Patel (1980, 1983, 1986a,b), various improvements have been proposed for this NA in the general
case of r×c tables (Joe, 1988; Clarkson et al., 1993;Aoki, 2002). The statistical package StatXact-5 (2001) incorporates
this NA for the exact analysis of the unordered r × c tables. Furthermore, in the case of 2 × c tables, Shao (1997)
has proposed a modification of the NA which is more efficient when the column sums are equal, but is generally less
efficient when the column sums are different.

In this paper, we present some modifications to the NA which are valid for any 2 × c table and which always make
the NA much more efficient (see Section 4). On the one hand, we propose a general recursive method to calculate all
of the exact LP(., .) quantities which are necessary in the processing of NA, based on the recurrence relation obtained
in Section 2. On the other hand, in each stage of the NA, conditions (2) and (3) are checked for all of the DNs and
all of the PAST values corresponding to each MN, but in the overwhelming majority of cases it is not necessary to
check these conditions, especially in the case of condition (2). In Section 2, we obtain a relation between the maximum
lengths of groups of subpaths which emanate from an MN, which, along with the consideration of the ordered PAST
values, makes the number of times that condition (2) must be checked practically insignificant. At the same time, this
makes it possible for the sets of paths which contribute to the p-value to be handled in big blocks. These modifications
(which are described in Section 3) will produce a drastic reduction in the total computation time of the NA applied to
a 2 × c table.

2. Relation between maximum subpath lengths in the NA

According to the construction of the NA, for each node
(
k, R(k)

)
k > 1 there is a one-to-one correspondence between

the set of subpaths from the node
(
k, R(k)

)
to the terminal node and the set of points of Multivariate Hypergeometric

distribution MH
(
R(k); C1, . . . , Ck

)
, and there is also a one-to-one correspondence between the modes of this distribution

and the longest subpaths from
(
k, R(k)

)
to the terminal node. Specifically, if

(
x∗

1 , . . . , x∗
k

)
is a mode of the previous

distribution, then the longest subpath which corresponds to it is determined by nodes
(
i, R(i)

)
i = k, k − 1, . . . , 0 such

that x∗
j = R(j) − R(j−1) j = 1, . . . , k. Therefore, we can say that the distribution MH

(
R(k); C1, . . . , Ck

)
is associated

with node
(
k, R(k)

)
. Logically, for any node

(
k, R(k)

)
k > 1, R(k) �N(k) must hold.

From the generation process of the DNs, given an MN
(
k, R(k)

)
, the values R(k−1) of its s DNs in stage k−1 constitutes

a succession of integer values, which we will denote by R(k−1)i i=1, . . . , s, such that R(k−1)1=max
{
0, R(k) − Ck

}
(for

the first DN), R(k−1)s = min
{
R(k), N(k−1)

}
(for the last DN) and R(k−1)i+1 =R(k−1)i + 1 i = 1, . . . , s − 1. Given what

we have previously established, each node of stage k − 1 (k > 2) will have an associated Multivariate Hypergeometric
distribution, and particularly, for i = 1, . . . , s, MH

(
R(k−1)i; C1, . . . , Ck−1

)
will be the distribution associated with

DN
(
k − 1, R(k−1)i

)
. These s distributions constitute a family which we will denote by Jk

(
R(k)

)
and which we will

associate with the MN
(
k, R(k)

)
. Moreover, according to the construction of the NA, if the distribution of (x1, . . . , xk)

is MH
(
R(k); C1, . . . , Ck

)
, then the family Jk

(
R(k)

)
will coincide with the family of conditional distributions of(

x1, . . . , xk−1 | xk = R(k) − R(k−1)i

)
i = 1, . . . , s.

During stage k of the NA we need to obtain the exact lengths LP
(
k − 1, R(k−1)

)
corresponding to the nodes of stage

k − 1. The following result establishes a recurrence relation between these lengths, which gives us a recursive method
to obtain the LPs of all of the nodes of stage k − 1 starting from the LP corresponding to one of the nodes of that stage.

Theorem 1. If
(
k − 1, R(k−1) − 1

)
,
(
k − 1, R(k−1)

)
and

(
k − 1, R(k−1) + 1

)
are consecutive arbitrary nodes of stage

k − 1 (k > 2) and
(
x∗

1 , . . . , x∗
k−1

)
is a mode of distribution MH

(
R(k−1); C1, . . . , Ck−1

)
associated with the node(

k − 1, R(k−1)

)
, then

(
x∗

1 , . . . , x∗
v − 1, . . . , x∗

k−1

)
and

(
x∗

1 , . . . , x∗
u + 1, . . . , x∗

k−1

)
are modes of the MHs associated

with nodes
(
k − 1, R(k−1) − 1

)
and

(
k − 1, R(k−1) + 1

)
, respectively, and the recurrence relations

LP
(
k − 1, R(k−1) + 1

)= LP
(
k − 1, R(k−1)

) Cu − x∗
u

x∗
u + 1

(4)

and

LP
(
k − 1, R(k−1) − 1

)= LP
(
k − 1, R(k−1)

) x∗
v

Cv − x∗
v + 1

(5)
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hold, where v is a value of j (1�j �k − 1) which maximizes the expression x∗
j /
(
Cj + 1

)
, and u is a value of j

(1�j �k − 1) which minimizes the expression (x∗
j + 1)/(Cj + 1).

The proof is given in the Appendix.
Let us now denote by LP′(k, R(k), R(k−1)) the product �

(
k, R(k), R(k−1)

)
LP
(
k − 1, R(k−1)

)
which appears on

the left of expression (2), which represents the longest subpath length that starts from an MN
(
k, R(k)

)
and passes

through its DN
(
k − 1, R(k−1)

)
. Given an MN

(
k, R(k)

)
, we will have an LP′ (k, R(k), R(k−1)i

)
for each one of its DNs(

k − 1, R(k−1)i

)
, i = 1, . . . , s.

Definition 1. Given an MN
(
k, R(k)

)
, we can say that a DN

(
k − 1, R(k−1)p

)
, 1�p�s, is a principal daughter node

(PDN) of
(
k, R(k)

)
when R(k−1)p = R(k) − x∗

k for some mode
(
x∗

1 , . . . , x∗
k

)
of the MH

(
R(k); C1, . . . , Ck

)
associated

with
(
k, R(k)

)
.

As the mode is not necessarily unique, the PDN is not necessarily unique either but, according to Lemma 2.2 and
Theorem 2.1 described in Requena and Martín (2000), the maximum number of PDNs of an MN is two, in which
case both should be consecutive. This allows us to divide the succession of DNs of an MN in two subsuccessions
separated by the PDN (or by the two PDNs). More specifically, let SL = {(

k − 1, R(k−1)1
)
, . . . ,

(
k − 1, R(k−1)p−1

)}
and SU = {(k − 1, R(k−1)q

)
, . . . ,

(
k − 1, R(k−1)s

)}
be the two subsuccessions, where q =p + 1 if

(
k − 1, R(k−1)p

)
is

the only PDN and q =p + 2 if there are two PDNs,
(
k − 1, R(k−1)p

)
and

(
k − 1, R(k−1)p+1

)
, and s is the total number

of DNs. SL, SU , or both might not exist, i.e. not contain any DN.
The next result establishes an ordering of the LP′ (k, R(k), R(k−1)i

)
quantities which correspond to the DNs of an

MN, which makes the number of times that condition (2) must be checked practically insignificant (as we shall see in
the next section).

Theorem 2. Given an MN
(
k, R(k)

)
, its DNs

(
k − 1, R(k−1)i

)
, i = 1, . . . , s, and p and q which determine the

subsuccessions SL and SU , then

LP′ (k, R(k), R(k−1)i+1
)
< LP′ (k, R(k), R(k−1)i

)
(6)

holds, for
(
k − 1, R(k−1)i+1

)
belonging to SU , i = q − 1, q, . . . , s − 1, and

LP′ (k, R(k), R(k−1)i−1
)
< LP′ (k, R(k), R(k−1)i

)
(7)

holds, for
(
k − 1, R(k−1)i−1

)
belonging to SL, i = p, p − 1, . . . , 2. Moreover, if there are two PDNs,

(
k − 1, R(k−1)p

)
and

(
k − 1, R(k−1)p+1

)
, then

LP
(
k, R(k)

)= LP′ (k, R(k), R(k−1)p

)= LP′ (k, R(k), R(k−1)p+1
)

, (8)

satisfying only the first equality of (8) if
(
k − 1, R(k−1)p

)
is the only PDN.

The proof is given in the Appendix.

3. Modifications to the NA for 2 × c tables

We can sum up the modifications to the NA in the following points:

1. As Clarkson et al. (1993) have shown, in each stage k the exact LP
(
k − 1, R(k−1)

)
quantities must be calculated

and stored, in order to be recovered when necessary. Using the recurrence relations of Theorem 1, we propose a
recursive method to calculate those LPs for all of the nodes of stage k−1 starting from the LP which corresponds to
one of the nodes of that stage (for example, the first node). This initial LP is calculated through a method developed
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by Requena and Martín (2003). This procedure also simultaneously gives us a mode of the MHs associated with
each one of nodes of stage k − 1 (which will be used to determine the PDNs).

2. In order to analyse the MN
(
k, R(k)

)
, we recover its PASTs (PAST1, . . . , PASTn) which we consider in ascending

order, we determine its DNs (which we represent in a simplified way with 1, 2, . . . , s) and its PDN, and we define
subsuccessions SL and SU . In order to simplify the algorithm, we can ignore the fact that there may be two PDNs;
what is necessary is that a PDN separates both subsuccessions (if there is another PDN and it is within SL or SU , it is
not important in practice). From Theorem 2, if condition (2) is fulfilled for a PAST and a DN, it will also be fulfilled
for all of the most extreme DNs of the subsuccession (the subsequent DNs if it is SU , or the previous DNs if it is SL).
Moreover, if (2) is fulfilled for a PASTj , this implies that it will also be fulfilled for all of the PASTj ′ with j ′ < j .
Let us denote by ri the subindex of maximum PAST such that (2) is fulfilled for DN i, i = 1, . . . , s, considering
that ri = 0 if (2) is not fulfilled for PAST1. It can be shown that ri = 0 always holds for the PDN. Furthermore, we
always find 0�ri �ri+1 �n within SU and 0�ri �ri−1 �n within SL. According to these previous considerations,
we can construct an algorithm to determine all of the ri , checking condition (2) a small number of times. We will
call a′ and b′ the minimum i in SL and the maximum i in SU , respectively, such that ri < n (taking a′ = 1 if SL

does not exist, and b′ = s if SU does not exist). In the same way, and as long as there is some ri > 0, a and b will
represent the maximum i in SL and the minimum i in SU , respectively, such that ri > 0.

3. Having finished the analysis of condition (2) for the present MN, we can begin the analysis of condition (3). We
determine for each DN i, a′ � i�b′ (this will necessarily include the PDN) the subindex (ti) of the minimum PAST
such that (3) holds, considering that ti = n + 1 if (3) is not fulfilled for PASTn. As ri < ti �n + 1 for every i and it
usually holds that ti+1 � ti within SL and ti−1 � ti within SU , and as (3) holds for a PASTj this implies that it will
also hold for all of the PASTj ′ with j ′ > j , we can construct an algorithm to determine all of the ti checking (3) a
relatively small number of times.

4. The next step in the analysis of the present MN
(
k, R(k)

)
is to store the updated PASTs. For DN i, a′ � i�b′, the

updated PASTs will be PASTj �(k, R(k), R(k−1)i ) j = ri + 1, . . . , ti − 1, which will obviously be ordered just as
the PASTj ’s are ordered.

5. The last step is to calculate the contribution of the present MN to the p-value. We obtain

T (ri) =
ri∑

j=1

PASTj fj

for each ri > 0, where fj is the frequency of PASTj . These T (ri) are calculated by recursion, i.e. if m and m′ are
two consecutive values of ri (m < m′),

T (m′) = T (m) +
m′∑

j=m+1

PASTj fj .

The total contribution of DN i (if ri > 0) to the p-value is Hi/D, where

Hi =
(

N(k−1)

R(k−1)i

)
�(k, R(k), R(k−1)i )T (ri),

and the total contribution of the present MN to the p-value will be

1

D

(
a∑

i=1

Hi +
s∑

i=b

Hi

)
.

6. With purely practical aims, it is enough to know the p-value of Fisher’s Exact Test with three or even two exact
figures. In this sense, a simple modification of the NA allows us to consider the PASTs grouped in intervals. In
a simple way, we consider that each previously stored PAST belongs to a different interval. When storing a new
updated PAST A, if there is any previously stored PAST which is within A ± A10−g , then both PASTs will belong
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to the same interval and their frequencies will be added, or, otherwise, A will generate a new interval. Therefore, the
length of the intervals depends on the value of g and the updated PAST values which are stored. Taking a suitable
value of g, we can obtain the number of exact figures wanted for the p-value. In this way, we drastically reduce
both the total computation time and the amount of memory required.

7. Finally, let us see some aspects which we have verified empirically.When we consider column sumsCj in descending
order, there is frequently a saving in computation time and, in some cases, this saving is significant. Moreover, if
in condition (3) we use the exact values of SP

(
k − 1, R(k−1)

)
, for a small or moderate c, the computation time of

these values is generally small in relation to the total computation time of the NA, however, for a large c and Cj ’s
which are not too small, that computation time can be considerable in the first stages of the NA. In these cases,
there is a certain time saving if condition (3) is not applied in the first stages of the NA (for example, in stages c,
c − 1 and c − 2).

4. Discussion

In this paper, we have presented some modifications to the NA in order to implement Fisher’s Exact Test in 2 × c

tables, which make it much more efficient than the classic NA of Mehta and Patel (1986a). Henceforth, we shall call
the NA with these proposed modifications, except the one referred to previously in Point 6, the modified NA. These
modifications are valid for any 2×c contingency table and are compatible with other improvements which have already
been proposed for the NA. It is particularly important that they are compatible with the Hybrid Algorithm of Mehta
and Patel (1986b).

With the sole objective of comparing the classic NA with the modified NA and to study the advantages of the latter, we
have developed two FORTRAN programmes, one for the classic NA (Mehta and Patel, 1986a) with the LPs and the SPs
calculated according to Joe (1988) and another identical one for the modified NA (without considering the modification
mentioned in Point 6 above). Both programmes carry out the calculations in FORTRAN double precision. Nonetheless,
they can be improved with more efficient programming techniques and other improvements, such as the incorporation
of Mehta and Patel’s (1986b) hybrid method. This improvement is already incorporated in StatXact-5 (2001). We have
solved many 2×c tables through both FORTRAN programmes and StatXact-5, which were implemented on a Pentium
PC. The set of tables resolved includes 2 × c tables with (a) values of c between 8 and 22, (b) values of N up to 300,
(c) column sums which are equal, moderately different and very different, and (d) small p-values, large p-values and
around 0.05 (the majority). Moreover, in all of these tables it is not advisable to use purely asymptotic methods. We
will now comment upon the features and performance of the proposed modifications for the NA.

1. Using the method presented in Joe (1988), the total computation time of the exact values of all of the necessary LPs
in the NA is normally small (in relation to the total time of the NA) for a small or moderate c, however, for a large
c and relatively large Cj ’s that time might be considerable. On the contrary, using the recursive method proposed
in Point 1 above, this total computation time is always absolutely negligible, even for large values of c and Cj ’s.
This is interesting especially in the tables where the use of Mehta and Patel’s Hybrid Algorithm is advisable.

2. In the classic NA, condition (2) is checked a great number of times throughout the algorithm and that number
increases as c and the Cj ’s increase. On the contrary, in the modified NA, (2) is checked an insignificant number
of times in relation to the classic NA, although in both cases (classic and modified NA) the exact LP quantities
are used. For example, in a particular 2 × 12 table we have verified that the number of times that (2) is checked is
around 109 in the classic NA and around 104 in the modified NA. This is a consequence of Theorem 2, as is shown
in Point 2 of the previous section. Therefore, the total computation time of this aspect of the algorithm is negligible
in the modified NA.

3. Storing the set of updated PASTs as was indicated in the previous section implies an important saving in computation
time, because, for DN i, both the set of updated PASTs which are going to be stored and the previously stored
PASTs are ordered and this represents a great advantage when checking the previously stored PASTs in order to
determine the frequency of each PAST. Moreover, always maintaining the PASTs in order does not represent an
important additional effort (we do not need to order them in each stage), since in stage c − 1 each MN has a single
PAST, and in the later stages the updated PASTs which are stored are already ordered and are stored in order.
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4. In order to make a comparison with StatXact-5, we have calculated the ratio “StatXact-5 computation time/modified
NA computation time”. This ratio is quite variable, depending on the observed 2 × c table, but it is always much
higher than 1. This ratio tends to increase as c and the Cj ’s increase. We have found ratios between 10 and 70 for
moderate values of c (between 8 and 12), and up to approximately 200 for c > 12. The usefulness of the modified
NA is greater for large values of c, since the real computation times through StatXact-5 can be considerable. For
example, for the 2 × 18 table

8 6 3 8 4 6 5 3 4 3 3 5 4 3 6 3 5 7
5 7 10 4 8 6 5 5 13 14 14 10 14 15 13 15 13 6

(p-value=0.051572) the real computation times were 1 h, 2 min and 4.06 s with StatXact-5 and only 53.07 s with
the modified NA (ratio=70.2). The largest ratio and the more striking difference in real computation time has been
found in a particular 2 × 22 table in which the times were about 7 h with StatXact-5 and less than 2 min with the
modified NA (ratio = 218).
The ratio also depends on how the column sums are balanced. In the tables with C1 = C2 = · · · = Cc we have
obtained ratios between 10 and 115, whilst the highest ratios were found in tables with unbalanced column sums.
With balanced column sums, the classic NA of StatXact-5 uses an easily computable formula to obtain the exact
LP values, so the improvement introduced in Point 1 of the previous section does not offer any advantage. The
reduction in computation times is due to the other improvements in the modified NA, especially Point 2. With
unbalanced column sums, StatXact-5 uses an upper bound for LP, so the improvement introduced in Point 1 also
contributes to the reduction in total computation time because it reduces the number of paths to be analysed (see
Joe, 1988) and because of what was stated in Point 1 of this section.
Finally, the reduction in computation time depends on the p-value of the table. For tables with a p-value of around
0.05, and more specifically, for tables with a p-value between 0.01 and 0.10 (which is the most interesting range
in practice) we have obtained ratios between 10 and 90, and in most cases the ratio was over 40. Similar ratios
were found for tables with a large p-value. On the other hand, the highest ratios were found in tables with a small
p-value.

5. We also compared the classic NA (with the LPs calculated according to Joe, 1988) with the modified NA, using
for this purpose the two FORTRAN programmes mentioned at the beginning of this section. The ratio “classic
NA computation time/modified NA computation time” depends on c, Cj ’s and the p-value in the same way as
previously expressed in Point 4, although this ratio is always clearly higher than that obtained in the comparison
made with StatXact-5. For moderate values of c, ratios between 20 and 300 have been found (although most of the
time they were higher than 50), and for large values of c, ratios up to approximately 1000 have been obtained. For
tables with a p-value between 0.01 and 0.10, ratios between 20 and 400 have been found.

6. Most of the total computation time with the modified NA is consumed in the storing of the updated PASTs of
the DNs. Therefore, if the number of PASTs which are accumulated in the last stages of the NA is high, the total
computation time increases considerably and also creates problems due to the great amount of memory required.
In these cases, we can use the additional modification indicated in Point 6 of the previous section (which until now
we have not used). This will considerably reduce the total number of PASTs (and, therefore, the total computation
time and the amount of memory required) in exchange for a slight loss in precision in the p-value which, in practical
terms, is not important. In this sense, we have slightly changed the FORTRAN programme of the modified NA
in order to include the new modification. We have solved many 2 × c tables for various values of g and we have
calculated the reductions both in computation time and the maximum number of PASTs in a stage, with respect to
those obtained through the modified NA. Taking g=4, in all of the cases we have obtained at least 4 exact figures in
the p-value (e.g. if p = 2.463402 × 10−5, at least the figures 2, 4, 6 and 3 are exact, which is more than we usually
need in practice). The reductions are variable and rather more important when the total computation time with the
modified NA is higher (which is when we most need the aforementioned reduction). For tables with computation
times lower than 1 min, we have obtained reductions of between 15% and 60% in computation time, and between
23% and 65% in the maximum number of PASTs. For tables with a computation time near to or higher than 1 min,
the reductions range from 50% to 92% for computation time and from 57% to 97% for the maximum number of
PASTs. With g = 3, rather more important reductions are obtained, with a number of exact figures remaining in
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the p-value which is sufficient in practice. Therefore, computation time and the amount of memory required will
depend on the number of exact figures wanted for the p-value.
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Appendix A

Proof of Theorem 1. The first part of the theorem is deduced from Theorem 2.1 given in Requena and Martín (2003).
On the other hand, if

(
k − 1, R(k−1)

)
and

(
k − 1, R(k−1) + 1

)
are DNs of the same MN (k, R(k)), then the demonstration

of expression (4) is simple, since the distributions associated with these DNs would belong to the family Jk

(
R(k)

)
associated with MN

(
k, R(k)

)
, and from Theorem 3.2 given in Requena and Martín (2000) (where a family likeJk

(
R(k)

)
is studied) expression (4) would be easily deduced. Therefore, it would be enough to demonstrate that given two nodes(
k − 1, R(k−1)

)
and

(
k − 1, R(k−1) + 1

)
there is always a node

(
k, R(k)

)
which is an MN of both. This is true since,

if it were false, from the process of generation of DNs we would find that
(
k − 1, R(k−1)

)
would be the last DN of an

MN, e.g.
(
k, R(k)

)
, and

(
k − 1, R(k−1) + 1

)
would be the first DN of the following MN

(
k, R(k) + 1

)
, i.e.

min
{
R(k), N(k−1)

}
< max

{
0, R(k) − Ck + 1

}
,

but this never holds because R(k) �0, N(k−1) > 0, Ck �1 and R(k) + 1�N(k). Expression (5) is obtained in a similar
way. �

Proof of Theorem 2. Let us consider the set of all the subpaths from
(
k, R(k)

)
to (0, 0), and let us denote by L any of

these subpaths which has a maximum length LP
(
k, R(k)

)
. Bearing in mind what we said at the beginning of Section 2,

and from Definition 1, it is clear that through each PDN of the MN
(
k, R(k)

)
at least one subpath L passes and every

subpath L must pass through a PDN. This demonstrates the last part of the theorem and expressions (6) and (7) for
i = q − 1 and i = p, respectively. Now we can demonstrate expression (6) by induction, since it is true for the first
value of i (i.e. i = q − 1). Therefore, we have to demonstrate that (6) is true for i supposing that it is true for i − 1
(q � i�s − 1). From expressions (1) and (4), in order to demonstrate that (6) is true for i we will have to demonstrate
that the following holds:(

Cu − x∗
u

)
/
(
Ck − R(k) + R(k−1)i + 1

)
<
(
x∗
u + 1

)
/
(
R(k) − R(k−1)i

)
, (9)

where
(
x∗

1 , . . . , x∗
k−1

)
is a mode of the MH

(
R(k−1)i; C1, . . . , Ck−1

)
associated to the node

(
k − 1, R(k−1)i

)
and u is

defined in Theorem 1. On the one hand, if inequality (6) is true for i − 1, from expressions (1) and (5) we will have(
R(k) − R(k−1)i + 1

)
/x∗

v <
(
Ck − R(k) + R(k−1)i

)
/
(
Cv − x∗

v + 1
)

,

with v defined in Theorem 1, and from this inequality we deduce(
R(k) − R(k−1)i

)
/ (Ck + 1) < x∗

v / (Cv + 1) . (10)

On the other hand, as
(
x∗

1 , . . . , x∗
k−1

)
is a mode of the MH

(
R(k−1)i; C1, . . . , Ck−1

)
, from Theorem 2.1 given in Requena

and Martín (2000) the inequalities

x∗
i / (Ci + 1) �

(
x∗
i + x∗

j + 1
)

/
(
Ci + Cj + 2

)
�
(
x∗
j + 1

)
/
(
Cj + 1

)
hold for i, j = 1, . . . , k − 1, i �= j , from where we can easily deduce

x∗
v / (Cv + 1) �

(
x∗
u + 1

)
/ (Cu + 1) , (11)
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with u and v defined as in Theorem 1. Finally, from inequalities (10) and (11) we find

(Cu + 1) / (Ck + 1) <
(
x∗
u + 1

)
/
(
R(k) − R(k−1)i

)
,

from where we directly deduce inequality (9). Inequality (7) is demonstrated in a similar way. �
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